Nitrate Reductase
   HOME

TheInfoList



OR:

Nitrate reductases are molybdoenzymes that reduce
nitrate Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
() to
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
(). This reaction is critical for the production of protein in most crop plants, as nitrate is the predominant source of nitrogen in fertilized soils.


Types


Eukaryotic

Eukaryotic nitrate reductases are part of the sulfite oxidase family of molybdoenzymes. They transfer electrons from NADH or NADPH to nitrate.


Prokaryotic

Prokaryotic nitrate reductases belong to the DMSO reductase family of molybdoenzymes and have been classified into three groups, assimilatory nitrate reductases (Nas), respiratory nitrate reductase (Nar), and periplasmic nitrate reductases (Nap). The active site of these enzymes is a
molybdenum Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
ion that is bound to the four thiolate functional groups of two
pterin Pterin is a heterocyclic compound composed of a pteridine ring system, with a " keto group" (a lactam) and an amino group on positions 4 and 2 respectively. It is structurally related to the parent bicyclic heterocycle called pteridine. Pter ...
molecules. The coordination sphere of the molybdenum ion is completed by one amino-acid side chain and oxygen and/or sulfur
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
s. In Nap, the molybdenum is covalently attached to the protein by a cysteine side chain, and an aspartate side chain in Nar.


Structure

Prokaryotic nitrate reductases have two major types, transmembrane nitrate reductases (NAR) and periplasmic nitrate reductases (NAP). NAR allows for proton translocation across the cellular membrane and can contribute to the generation of ATP by the proton motive force. NAP cannot do so. The transmembrane respiratory nitrate reductase is composed of three subunits; an 1 alpha, 1 beta and 2 gamma. It can substitute for the NRA enzyme in ''
Escherichia coli ''Escherichia coli'' ( )Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Escherichia'' that is commonly fo ...
'', allowing it to use nitrate as an
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents. The electron accepting power of an electron acceptor is measured by its redox potential. In the ...
for anaerobic respiration. A transmembrane nitrate reductase that can function as a proton pump (similar to the case of
anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing ...
) has been discovered in the
diatom A diatom (Neo-Latin ''diatoma'') is any member of a large group comprising several Genus, genera of algae, specifically microalgae, found in the oceans, waterways and soils of the world. Living diatoms make up a significant portion of Earth's B ...
'' Thalassiosira weissflogii''. The nitrate reductase of higher plants, algae, and fungi is a homodimeric cytosolic protein with five conserved domains in each monomer: 1) an Mo-MPT domain that contains the single molybdopterin cofactor, 2) a dimer interface domain, 3) a cytochrome b domain, and 4) an NADH-binding domain that combines with 5) an FAD-binding domain to form the cytochrome b reductase fragment. There exists a Glycophosphatidylinositol-anchored variant that is found on the outer face of the plasma membrane. Its function is not clear.


Mechanism

In prokaryotic periplasmic nitrate reductase, the nitrate anion binds to Mo(IV). Oxygen transfer yields an Mo(VI) oxo intermediate with release of nitrite. Reduction of the Mo oxide and protonolysis removes the oxo group, regenerating Mo(IV). Similar to the prokaryotic nitrate reduction mechanism, in eukaryotic nitrate reductase, an oxygen in nitrate binds to Mo in the +4 oxidation state, displacing a hydroxide ion. Then the Mo d-orbital electrons flip over, creating a multiple bond between Mo(VI) and that oxygen, ejecting nitrite. The Mo(VI) double bond to oxygen is reduced by NAD(P)H passed through the intramolecular transport chain.


Regulation

Nitrate reductase (NR) is regulated at the transcriptional and translational levels induced by light, nitrate, and possibly a negative feedback mechanism. First, nitrate assimilation is initiated by the uptake of nitrate from the root system, reduced to nitrite by nitrate reductase, and then nitrite is reduced to ammonia by nitrite reductase. Ammonia then goes into the GS-GOGAT pathway to be incorporated into amino acids. When the plant is under stress, instead of reducing nitrate via NR to be incorporated into amino acids, the nitrate is reduced to nitric oxide which can have many damaging effects on the plant. Thus, the importance of regulating nitrate reductase activity is to limit the amount of nitric oxide being produced.


Inactivation of nitrate reductase

The inactivation of nitrate reductase has many steps and many different signals that aid in the inactivation of the enzyme. Specifically in spinach, the very first step of nitrate reductase inactivation is the phosphorylation of NR on the 543-serine residue. The very last step of nitrate reductase inactivation is the binding of the 14-3-3 adapter protein, which is initiated by the presence of Mg2+ and Ca2+. Higher plants and some algae post-translationally regulate NR by phosphorylation of serine residues and subsequent binding of a 14-3-3 protein.


Anoxic conditions

Studies were done measuring the nitrate uptake and nitrate reductase activity in anoxic conditions to see if there was a difference in activity level and tolerance to anoxia. These studies found that nitrate reductase, in anoxic conditions improves the plants tolerance to being less aerated. This increased activity of nitrate reductase was also related to an increase in nitrite release in the roots. The results of this study showed that the dramatic increase in nitrate reductase in anoxic conditions can be directly attributed to the anoxic conditions inducing the dissociation of 14-3-3 protein from NR and the dephosphorylation of the nitrate reductase.


Applications

Nitrate reductase activity can be used as a biochemical tool for predicting grain yield and grain protein production. Nitrate reductase can be used to test nitrate concentrations in biofluids. Nitrate reductase promotes amino acid production in tea leaves. Under south Indian conditions, it is reported that tea plants sprayed with various micronutrients (like Zn, Mn and B) along with Mo enhanced the amino acid content of tea shoots and also the crop yield.


References


External links

* * {{DEFAULTSORT:Nitrate Reductase Enzymes Integral membrane proteins EC 1.7.99 Protein families