Nickel-63
   HOME

TheInfoList



OR:

Naturally occurring nickel (Ni) consists of five stable
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s; Ni, Ni, Ni, Ni and Ni; Ni is the most abundant (68.077% natural abundance). 26 radioisotopes have been characterized; the most stable are Ni with a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay. Half-life, half life or halflife may also refer to: Film * Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang * ''Half Life: ...
of 81,000 years, Ni with a half-life of 100.1 years, and Ni (6.077 days). All the other radioactive isotopes have half-lives of less than 60 hours and most of these have half-lives of less than 30 seconds. This element also has 8 meta states.


List of isotopes

, - , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 20 , rowspan=3, 48.01952(46)# , rowspan=3, 2.8(8) ms , 2 p (70%) , , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β+ (30%) , , - , β+, p? , , -id=Nickel-49 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 21 , rowspan=2, 49.00916(64)# , rowspan=2, 7.5(10) ms , β+, p (83%) , , rowspan=2, 7/2−# , rowspan=2, , rowspan=2, , - , β+ (17%) , , -id=Nickel-50 , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 22 , rowspan=3, 49.99629(54)# , rowspan=3, 18.5(12) ms , β+, p (73%) , , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β+, 2p (14%) , , - , β+ (13%) , , -id=Nickel-51 , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 23 , rowspan=3, 50.98749(54)# , rowspan=3, 23.8(2) ms , β+, p (87.2%) , , rowspan=3, 7/2−# , rowspan=3, , rowspan=3, , - , β+ (12.3%) , , - , β+, 2p (0.5%) , , -id=Nickel-52 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 24 , rowspan=2, 51.975781(89) , rowspan=2, 41.8(10) ms , β+ (68.9%) , , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p (31.1%) , , -id=Nickel-53 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 25 , rowspan=2, 52.968190(27) , rowspan=2, 55.2(7) ms , β+ (77.3%) , , rowspan=2, (7/2−) , rowspan=2, , rowspan=2, , - , β+, p (22.7%) , , -id=Nickel-54 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 26 , rowspan=2, 53.9578330(50) , rowspan=2, 114.1(3) ms , β+ , , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+, p? , , -id=Nickel-54m , rowspan=2 style="text-indent:1em" , , rowspan=2 colspan="3" style="text-indent:2em" , 6457.4(9) keV , rowspan=2, 152(4) ns , IT (64%) , , rowspan=2, 10+ , rowspan=2, , rowspan=2, , - , p (36%) , , -id=Nickel-55 , , style="text-align:right" , 28 , style="text-align:right" , 27 , 54.95132985(76) , 203.9(13) ms , β+ , , 7/2− , , , - , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 28 , rowspan=2, 55.94212776(43) , rowspan=2, 6.075(10) d , EC , , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (<%) , , -id=Nickel-57 , , style="text-align:right" , 28 , style="text-align:right" , 29 , 56.93979139(61) , 35.60(6) h , β+ , , 3/2− , , , - , , style="text-align:right" , 28 , style="text-align:right" , 30 , 57.93534165(37) , colspan=3 align=center, Observationally stableBelieved to decay by β+β+ to with a half-life over 7×1020 years , 0+ , 0.680769(190) , , - , rowspan=2 , , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 31 , rowspan=2 , 58.93434544(38) , rowspan=2 , 8.1(5)×104 y , EC (99%) , rowspan=2 , , rowspan=2 , 3/2− , rowspan=2 , , rowspan=2 , , - , β+ (1.5%) , - , , style="text-align:right" , 28 , style="text-align:right" , 32 , 59.93078513(38) , colspan=3 align=center, Stable , 0+ , 0.262231(150) , , -id=Nickel-61 , , style="text-align:right" , 28 , style="text-align:right" , 33 , 60.93105482(38) , colspan=3 align=center, Stable , 3/2− , 0.011399(13) , , - , Highest binding energy per nucleon of all nuclides , style="text-align:right" , 28 , style="text-align:right" , 34 , 61.92834475(46) , colspan=3 align=center, Stable , 0+ , 0.036345(40) , , - , , style="text-align:right" , 28 , style="text-align:right" , 35 , 62.92966902(46) , 101.2(15) y , β , , 1/2− , , , -id=Nickel-63m , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 87.15(11) keV , 1.67(3) μs , IT , 63Ni , 5/2− , , , - , , style="text-align:right" , 28 , style="text-align:right" , 36 , 63.92796623(50) , colspan=3 align=center, Stable , 0+ , 0.009256(19) , , -id=Nickel-65 , , style="text-align:right" , 28 , style="text-align:right" , 37 , 64.93008459(52) , 2.5175(5) h , β , , 5/2− , , , -id=Nickel-65m , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 63.37(5) keV , 69(3) μs , IT , 65Ni , 1/2− , , , -id=Nickel-66 , , style="text-align:right" , 28 , style="text-align:right" , 38 , 65.9291393(15) , 54.6(3) h , β , , 0+ , , , -id=Nickel-67 , , style="text-align:right" , 28 , style="text-align:right" , 39 , 66.9315694(31) , 21(1) s , β , , 1/2− , , , -id=Nickel-67m , rowspan=2 style="text-indent:1em" , , rowspan=2 colspan="3" style="text-indent:2em" , 1006.6(2) keV , rowspan=2, 13.34(19) μs , IT , , rowspan=2, 9/2+ , rowspan=2, , rowspan=2, , - , IT , , -id=Nickel-68 , , style="text-align:right" , 28 , style="text-align:right" , 40 , 67.9318688(32) , 29(2) s , β , , 0+ , , , -id=Nickel-68m1 , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 1603.51(28) keV , 270(5) ns , IT , 68Ni , 0+ , , , -id=Nickel-68m2 , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 2849.1(3) keV , 850(30) μs , IT , 68Ni , 5− , , , -id=Nickel-69 , , style="text-align:right" , 28 , style="text-align:right" , 41 , 68.9356103(40) , 11.4(3) s , β , , (9/2+) , , , -id=Nickel-69m1 , rowspan=2 style="text-indent:1em" , , rowspan=2 colspan="3" style="text-indent:2em" , 321(2) keV , rowspan=2, 3.5(4) s , β , , rowspan=2, (1/2−) , rowspan=2, , rowspan=2, , - , IT (<0.01%) , , -id=Nickel-69m2 , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 2700.0(10) keV , 439(3) ns , IT , 69Ni , (17/2−) , , , -id=Nickel-70 , , style="text-align:right" , 28 , style="text-align:right" , 42 , 69.9364313(23) , 6.0(3) s , β , , 0+ , , , -id=Nickel-70m , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 2860.91(8) keV , 232(1) ns , IT , 70Ni , 8+ , , , -id=Nickel-71 , , style="text-align:right" , 28 , style="text-align:right" , 43 , 70.9405190(24) , 2.56(3) s , β , , (9/2+) , , , -id=Nickel-71m , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 499(5) keV , 2.3(3) s , β , 71Cu , (1/2−) , , , -id=Nickel-72 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 44 , rowspan=2, 71.9417859(24) , rowspan=2, 1.57(5) s , β , , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n? , , -id=Nickel-73 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 45 , rowspan=2, 72.9462067(26) , rowspan=2, 840(30) ms , β , , rowspan=2, (9/2+) , rowspan=2, , rowspan=2, , - , β, n? , , -id=Nickel-74 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 46 , rowspan=2, 73.9479853(38) , rowspan=2, 507.7(46) ms , β , , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n? , , -id=Nickel-75 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 47 , rowspan=2, 74.952704(16) , rowspan=2, 331.6(32) ms , β (90.0%) , , rowspan=2, 9/2+# , rowspan=2, , rowspan=2, , - , β, n (10.0%) , , -id=Nickel-76 , rowspan=2, , rowspan=2 style="text-align:right" , 28 , rowspan=2 style="text-align:right" , 48 , rowspan=2, 75.95471(32)# , rowspan=2, 234.6(27) ms , β (86.0%) , , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β, n (14.0%) , , -id=Nickel-76m , style="text-indent:1em" , , colspan="3" style="text-indent:2em" , 2418.0(5) keV , 547.8(33) ns , IT , 76Ni , (8+) , , , -id=Nickel-77 , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 49 , rowspan=3, 76.95990(43)# , rowspan=3, 158.9(42) ms , β (74%) , , rowspan=3, 9/2+# , rowspan=3, , rowspan=3, , - , β, n (26%) , , - , β, 2n? , , - , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 50 , rowspan=3, 77.96256(43)# , rowspan=3, 122.2(51) ms , β , , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β, n? , , - , β, 2n? , , -id=Nickel-79 , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 51 , rowspan=3, 78.96977(54)# , rowspan=3, 44(8) ms , β , , rowspan=3, 5/2+# , rowspan=3, , rowspan=3, , - , β, n? , , - , β, 2n? , , -id=Nickel-80 , rowspan=3, , rowspan=3 style="text-align:right" , 28 , rowspan=3 style="text-align:right" , 52 , rowspan=3, 79.97505(64)# , rowspan=3, 30(22) ms , β , , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , β, n? , , - , β, 2n? , , -id=Nickel-81 , , style="text-align:right" , 28 , style="text-align:right" , 53 , 80.98273(75)# , 30# ms
410 ns, β? , , 3/2+# , , , -id=Nickel-82 , , style="text-align:right" , 28 , style="text-align:right" , 54 , 81.98849(86)# , 16# ms
410 ns, β? , , 0+ , ,


Notable isotopes

The known isotopes of nickel range in mass number from Ni to Ni, and include: Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s Ni is " doubly magic" (like ) and therefore much more stable (with a lower limit of its half-life-time of .5 μs) than would be expected from its position in the chart of nuclides. It has the highest ratio of protons to neutrons (proton excess) of any known doubly magic nuclide. Nickel-56 is produced in large quantities in
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e. In the last phases of stellar evolution of very large stars, fusion of lighter elements like hydrogen and helium comes to an end. Later in the star's life cycle, elements including magnesium, silicon, and sulfur are fused to form heavier elements. Once the last nuclear fusion reactions cease, the star collapses to produce a
supernova A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
. During the supernova, silicon burning produces Ni. This isotope of nickel is favored because it has an equal number of neutrons and protons, making it readily produced by fusing two Si atoms. Ni is the last element that can be formed in the alpha process. Past Ni, nuclear reactions are endoergic and energetically unfavorable. Ni decays to Co and then Fe by
β+ decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar (nuclide), isobar of that nuclide. For example, beta dec ...
. The radioactive decay of Ni and Co supplies much of the energy for the light curves observed for stellar supernovae. The shape of the light curve of these supernovae display characteristic timescales corresponding to the decay of Ni to Co and then to Fe. Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture (EC) from copper-58, and EC + p from zinc-59. Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 81,000 years. Ni has found many applications in isotope geology. Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and
sediment Sediment is a solid material that is transported to a new location where it is deposited. It occurs naturally and, through the processes of weathering and erosion, is broken down and subsequently sediment transport, transported by the action of ...
. Nickel-60 is the daughter product of the extinct radionuclide (half-life 2.6 My). Because Fe has such a long half-life, its persistence in materials in the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
at high enough concentrations may have generated observable variations in the isotopic composition of Ni. Therefore, the abundance of Ni in extraterrestrial material may provide insight into the origin of the Solar System and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early Solar System. Therefore, so far, no actual age information has been attained from Ni excesses. Ni is also the stable end-product of the decay of Zn, the product of the final rung of the alpha ladder. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60. Nickel-61 is the only stable isotope of nickel with a nuclear spin (''I'' = 3/2), which makes it useful for studies by EPR spectroscopy. Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, though fusion can form heavier isotopes. For instance, two Ca atoms can fuse to form Kr plus 4 positrons (plus 4 neutrinos), liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon. Nickel-63 has two main uses: Detection of explosives traces, and in certain kinds of electronic devices, such as gas discharge tubes used as surge protectors. A surge protector is a device that protects sensitive electronic equipment like computers from sudden changes in the electric current flowing into them. It is also used in Electron capture detector in gas chromatography for the detection mainly of halogens. It is proposed to be used for miniature betavoltaic generators for pacemakers. Nickel-64 is another stable isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64. Nickel-78 is one of the element's heaviest known isotopes. With 28 protons and 50 neutrons, nickel-78 is doubly magic, resulting in much greater nuclear binding energy and stability despite a lopsided neutron-proton ratio. Its half-life is milliseconds. Due to its magic neutron number, Ni is believed to have an important role in supernova nucleosynthesis of elements heavier than iron. Ni, along with ''N'' = 50 isotones Cu and Zn, are thought to constitute a waiting point in the ''r''-process, where further neutron capture is delayed by the shell gap and a buildup of isotopes around ''A'' = 80 results.


See also

Daughter products other than nickel * Isotopes of copper * Isotopes of cobalt * Isotopes of iron * Isotopes of manganese


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** ** {{Navbox element isotopes Nickel Nickel