Nice 2 Model
   HOME

TheInfoList



OR:

The Nice 2 model is a model of the early evolution of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
. The Nice 2 model resembles the original Nice model in that a late instability of the outer Solar System results in gravitational encounters between planets, the disruption of an outer
planetesimal Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System a ...
disk, and the migrations of the
outer planets The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
to new orbits. However, the Nice 2 model differs in its initial conditions and in the mechanism for triggering the late instability. These changes reflect the analysis of the orbital evolution of the outer Solar System during the gas disk phase and the inclusion of gravitational interactions between planetesimals in the outer disk into the model.


Description

The Nice 2 model begins with the outer planets in a stable quadruple
resonance Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
with each planet in resonance with its nearest neighbors. One example among several potential stable quadruple resonance configurations is
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
and
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
in a 3:2 resonance, Saturn and Uranus in a 3:2 resonance, and
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (mythology), Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars (mythology), Mars), grandfather ...
and
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
in a 4:3 resonance. Interactions with an outer planetesimal disk that is gravitationally stirred by
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of trans-Neptunian object, bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the S ...
-sized objects cause the planets to migrate inward while remaining in resonance. During this migration the eccentricity of the inner
ice giant An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune. In astrophysics and planetary science t ...
increases, leading to secular-resonance crossings. After several hundred million years, the resonant configuration is destabilized during one of these secular-resonance crossings. Gravitational encounters between the planets similar to those in the original Nice model begin shortly thereafter.


Development

The Nice 2 model addresses some weaknesses of the original Nice model. The first weakness is the artificial selection of the initial orbits of the outer planets to produce an instability that matches the timing of the Late Heavy Bombardment. The second weakness is the sensitivity of the timing of the instability to the location of the inner edge of the planetesimal disk. The Nice 2 model uses particular initial conditions, derived from the examination of the orbital evolution of giant planets orbiting in a gas disk, which may occur under appropriate circumstances. An instability trigger with no apparent correlation between the timing of the instability and the position of the inner edge of the planetesimal disk is the result of the incorporation of the interactions between planetesimals into the Nice 2 model.


Initial conditions

The initial orbits of the giant planets in the Nice 2 model correspond to a predicted orbital structure of the outer Solar System at the end of the gas disk phase. Models of giant planets orbiting in a gas disk predict that they would migrate toward the central star at a rate dependent on the mass of the planet and characteristics of the disk. In a system with multiple planets this migration can result in the convergence of the planet's orbits and their capture into mean-motion resonances. Investigations focusing on Jupiter and Saturn demonstrated that they can be captured in a 3:2 or 2:1 resonance depending on the characteristics of the protoplanetary disk. After capture into resonance, the gaps that Jupiter and Saturn formed in the disk's density distribution may overlap and their inward migration may be halted or reversed. When Uranus and Neptune are added in turn to the model they are captured into further resonances with the capture of the outer ice giant resulting in the inner ice giant having a higher eccentricity than the other planets. The result is a system in a quadruple resonance. A number of stable configurations have been identified with the particular final configuration depending on the starting locations of the planets.


Instability trigger

The inclusion of gravitational interactions between planetesimals in the outer disk revealed an alternative mechanism for triggering the late instability of the outer planets. During numerical simulations that included the gravitational interactions between planetesimals, a transfer of energy between the disk and the planets was observed. This energy transfer led to the migration of the planets toward the Sun and occurred even when there were no encounters between planetesimals and the planets. As the migration progressed the eccentricity of the inner ice giant increased. In some of the simulations the quadruple resonance was eventually destabilized resulting in gravitational encounters between planets. The instability was observed in 25% of the simulations with the timing varying between 300 million and 1 billion years. No correlation between the location of the inner edge of the planetesimal disk and the occurrence or the timing of the instability was apparent. Closer investigation using a simpler model with one planet and a planetesimal disk indicated that the energy transfer was due to a coupling between the eccentricity of the planetesimals in the outer belt and the semi-major axis of the planet. As a result of this coupling an increase in the average eccentricity of the planetesimal belt driven via the gravitational stirring by Pluto-sized objects yields a decrease in the
semi-major axis In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis (major semiaxis) is the long ...
of the planet. The coupling was found to be proportional to the eccentricity of the planet and in a multiple planet system would have its greatest effect on the most eccentric planet. The increase in the eccentricity of the inner ice giant was found to be due to the varying strengths of the coupling between the planetesimal disk and the planets. The inner ice giant, with its higher eccentricity due to its resonant capture of the outer ice giant, would normally migrate at a faster rate than the other planets. However, since the resonant configuration requires that the migration be synchronized, the inner ice giant must drag the other planets along. The increase in the inner ice giant's eccentricity is a result of this process. Examination of the orbital evolution of the planets revealed that the destabilization of their orbits was due to secular resonance crossings. The increase of the eccentricity of the inner ice giant during the migration led to the slow variation of the precession frequencies of the planets. Secular resonances occurred when these frequencies became similar. The eccentricity of the inner ice giant fluctuated during these secular resonance crossings, sometimes dropping enough to cause the breaking of the quadruple resonance. Whether the quadruple resonance broke was determined by the strength of the secular resonance and the time spent in the secular resonance. The nature of the instability mechanism is responsible for the lack of a correlation between the distance to the inner edge of the planetesimal belt and the timing of the instability. If the inner edge of the planetesimal disk is close the migration of the planets occurs at a faster rate. More secular resonance crossings occur but since less time is spent in each one only the strongest can break the quadruple resonance. The reverse is true for a more distant planetesimal belt. As a result of the conflict between these factors the timing and the occurrence of the instability is fairly independent of the distance to the inner edge of the planetesimal belt.


Potential issues and an alternative

A study using a numerical simulation that included gravitational interactions among all objects revealed that a dynamical instability occurred in less than 70 million years. Interactions between planetesimals dynamically heated the disk and lead to earlier interactions between the planetesimals and giant planets. This study used a limited number of planetesimals due to computational constraints so it is as yet unknown whether this result would apply to a more complete disk. The combination of the late destabilization of a five planet resonant chain and an extended migration of Neptune is unlikely. Reproducing the orbital distribution of the Kuiper belt objects requires that Neptune undergo a migration of several AU, reaching 28 AU before the encounters between planets begin. This migration of Neptune is likely if the planetesimal disk began within 2 AU of Neptune's initial orbit. However, a late destabilization of the resonance chain requires a more distant disk, at least 4 AU beyond Neptune's orbit. An early breaking of the resonance chain followed by a slow dust-driven migration may bridge this gap. The dust-driven is the result of collision among the planetesimals producing debris that is ground to dust in a collisional cascade. The dust then spirals toward the orbits of the planets due to Poynting–Robertson drag. Interactions with this dust disrupts the resonance chain and drive their migration toward the planetesimal disk over a several hundred million years period. The instability mechanism of the Nice 2 model becomes irrelevant if the dust generated by collisions among the planetesimals disrupts a resonant chain early.


See also

*
Jumping-Jupiter scenario The jumping-Jupiter scenario specifies an evolution of giant- planet migration described by the Nice model, in which an ice giant (Uranus, Neptune, or an additional Neptune-mass planet) is scattered inward by Saturn and outward by Jupiter, causing ...
*
Five-planet Nice model The five-planet Nice model is a numerical model of the early Solar System that is a revised variation of the Nice model. It begins with five giant planets, the four that exist today plus an additional ice giant between Saturn and Uranus in a chain ...


References

{{reflist Solar System dynamic theories