
In
numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of ...
, the Newton–Cotes formulas, also called the Newton–Cotes quadrature rules or simply Newton–Cotes rules, are a group of formulas for
numerical integration
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral.
The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integr ...
(also called ''quadrature'') based on evaluating the integrand at equally spaced points. They are named after
Isaac Newton
Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
and
Roger Cotes.
Newton–Cotes formulas can be useful if the value of the integrand at equally spaced points is given. If it is possible to change the points at which the integrand is evaluated, then other methods such as
Gaussian quadrature
In numerical analysis, an -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for .
Th ...
and
Clenshaw–Curtis quadrature
Clenshaw–Curtis quadrature and Fejér quadrature are methods for numerical integration, or "quadrature", that are based on an expansion of the Integrand#Terminology and notation, integrand in terms of Chebyshev polynomials. Equivalently, they em ...
are probably more suitable.
Description
It is assumed that the value of a function defined on