Neurosphere
   HOME

TheInfoList



OR:

A neurosphere is a culture system composed of free-floating clusters of
neural stem cells Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor ste ...
. Neurospheres provide a method to investigate neural precursor cells ''
in vitro ''In vitro'' (meaning ''in glass'', or ''in the glass'') Research, studies are performed with Cell (biology), cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in ...
''. Putative neural stem cells are suspended in a medium lacking adherent substrates but containing necessary growth factors, such as epidermal growth factor and
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by the macrophages. They are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in ...
. This allows the neural stem cells to form into characteristic 3-D clusters. However, neurospheres are not identical to stem cells; rather, they only contain a small percentage of neural stem cells.Kempermann, Gerd. ''Adult Neurogenesis''. Oxford University Press, 2006, p. 66-78. The predominant use of the neurosphere is in the neurosphere
assay An assay is an investigative (analytic) procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity ...
. However, in vitro and in vivo environments have shown to have different inductive effects on precursor cells. The creation of the neurosphere assay is highly sensitive; it is still unclear as to the exact differing effects that environment produces, relative to the ''in vivo'' environment.


History

Reynolds and Weiss first described the neurosphere method of investigating neural precursor cells in 1992. The method was continued through the work of Angelo Viscovi and Derek van der Kooy and colleagues.


Reynolds and Weiss

In 1992, Brent A. Reynolds and Samuel Weiss attempted to isolate EGF-responsive cells from an adult mouse central nervous system (CNS). They dissociated the striata of 3 to 18-month-old mice via enzymes and plated them in a serum-free culture containing 20 ng of EGF per milliliter. After two days in vitro, most of the cells had died, but 15±2 cells for each plate were undergoing cell division. This continued for two to three days, after which the proliferating clusters of cells detached and formed a sphere of proliferating cells. After this discovery of a spherical formation of cells, the two assessed the
antigenic In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. Anti ...
properties of the cells within these spheres. They found that cells in the spheres were nearly all immunoreactive for nestin, an intermediate filament found in neuroepithelial stem cells. The cells were not immunoreactive for
neurofilament Neurofilaments (NF) are classed as Intermediate filament#Type IV, type IV intermediate filaments found in the cytoplasm of neurons. They are protein polymers measuring 10 nm in diameter and many micrometers in length. Together with mic ...
, neuron-specific enolase (NSE), and glial fibrillary acidic protein (GFAP). After more proliferation and longer days in vitro in the presence of EGF, cells eventually became immunoreactive to neurofilament, NSE, and GFAP. The cells that had this immunoreactivity were then tested for CNS
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotra ...
s with indirect
immunocytochemistry Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows vis ...
. Reynolds and Weiss found that, at 21 days, in vitro cultures of spheres and associated cells contained two of the major neurotransmitters of the adult striatum. These spheres of cells that Reynolds and Weiss discovered in 1992 were the first neurosphere formations created and analyzed.


Neurosphere (Stemness) Assay

The neurosphere assay examines three fundamental characteristics of neural stem cells: proliferation, self-renewal, and
multipotency Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum ...
. Self-renewal and multipotency are the requirements for cells to be considered stem cells. The neurosphere assay, or stemness assay, has been used to confirm that neurospheres contain neural stem cells. Neurospheres are dissociated and distributed into single-cell wells to examine self-renewal through clonal analysis. A small percentage of cells reform into a secondary neurosphere. The secondary neurospheres are then transferred into a culture medium containing growth factors that promote cell differentiation. The presence of varying cell types, including
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s,
astrocyte Astrocytes (from Ancient Greek , , "star" and , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of en ...
s, and
oligodendrocyte Oligodendrocytes (), also known as oligodendroglia, are a type of neuroglia whose main function is to provide the myelin sheath to neuronal axons in the central nervous system (CNS). Myelination gives metabolic support to, and insulates the axons ...
s, confirms the multipotency of these precursor cells. The evidence of self-renewal and multipotency serves to confirm the presence of neural stem cells within neurospheres, and emphasizes that neural stem cells comprise only a fraction of the neurosphere.


Clinical Applications

Since the neurosphere assay's goal is to develop neural stem cells in vitro, the clinical applications of such an achievement can be highly beneficial. Neural stem cells that are transplanted are able to cross the
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable membrane, semipermeable border of endothelium, endothelial cells that regulates the transfer of solutes and chemicals between the circulatory system and the central nervous system ...
and integrate themselves into the host's brain without disrupting normal function. This therapeutic application of neural stem cells derived from neurospheres is still in its infancy concerning efficacy, but it has a high potential for success in treating many diseases. Another aspect of clinical applications regarding neural stem cells is versatility. There have been neural stem cell transplants into various tissues with successful differentiation and proliferation in these tissues. This broader differentiation "spectrum" would be highly exploitable in a clinical setting. Neurospheres have also been used for peripheral nerve regeneration


Auditory Restoration

Researchers are exploring the use of neural stem cells (NSCs) obtained from neurospheres to aid in the regrowth of inner ear neurons and hair cells. Hu et al. transplanted adult mice NSCs into normal and deafened inner ears of guinea pigs. Before implantation, the NSCs were treated with neurogenin 2 protein to encourage the proliferation of the intended inner ear cells. They concluded that adult NSCs were indeed able to survive and differentiate in the injured inner ear and that this type of therapy could act to restore auditory function in hearing-impaired subjects. This experiment also indicates that genetic engineering can contribute to the success of generating specific progenitor cells of interest.


Limitations

However useful the neurosphere culture has been for biological studies of developmental processes and the functional assay for testing neuronal characteristics, there are several limitations to the method. First, the neurosphere culture formation is highly sensitive to the procedure, as the creation is contingent on the system used to create the culture. Variations in cell density, different constituents or concentrations of factors in the media and method, method and frequency of passaging, and whether the neurosphere is dissociated before differentiation can lead to differences in both the composition of cell types and properties within each neurosphere. This poses a problem for consolidating and interpreting data, even within the same study. Another problem with the system arises from the nature of suspension cultures (in vitro) : individual cells cannot easily be carefully monitored. Since the neuronic capacity of the neurosphere-expanded cells diminishes after an extended number of passages, the lack of monitoring adds further complexity to the neurosphere method. Finally, only a small percentage of cells within each heterogeneous sphere have the potential to form neurospheres, and even fewer cells actually fulfill the criteria for being neural stem cells. Neurospheres each contain cells at multiple stages of differentiation, including stem cells, proliferating neural progenitor cells, postmitotic neurons, and
glia Glia, also called glial cells (gliocytes) or neuroglia, are non-neuronal cells in the central nervous system (the brain and the spinal cord) and in the peripheral nervous system that do not produce electrical impulses. The neuroglia make up ...
. Moreover, the heterogeneity of the neurosphere increases with its size, since more and more varied cell types arise with a longer time in culture.


See also

*
Cerebral organoid A neural, or brain organoid, describes an artificially grown, ''in vitro,'' tissue resembling parts of the human brain. Neural organoids are created by culturing pluripotent stem cells into a three-dimensional culture that can be maintained fo ...
*
Neural stem cell Neural stem cells (NSCs) are self-renewing, multipotent cells that firstly generate the radial glial progenitor cells that generate the neurons and glia of the nervous system of all animals during embryonic development. Some neural progenitor st ...
*
Progenitor cell A progenitor cell is a biological cell that can differentiate into a specific cell type. Stem cells and progenitor cells have this ability in common. However, stem cells are less specified than progenitor cells. Progenitor cells can only diffe ...
*
Adult stem cell Adult stem cells are undifferentiated cells, found throughout the body after development, that multiply by cell division to replenish dying cells and regenerate damaged tissues. Also known as somatic stem cells (from Greek σωματικóς ...


References

{{reflist, 30em


External links

*A Network Protocol for generating neurospheres has been published on the
Nature Protocols ''Nature Protocols'', published by the Nature Publishing Group, is an on-line scientific journal publishing methods in a recipe-style format. The journal was launched in June 2006 and the content includes both classical methods and cutting-edge tec ...
site
Neural Stem Cell Culture: Neurosphere generation, microscopical analysis and cryopreservation
*Reusable 3D cell culture tool used for growin

- 3D Petri Dish Developmental neuroscience