Neuropore
   HOME

TheInfoList



OR:

Neurulation refers to the folding process in
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
s, which includes the transformation of the
neural plate In embryology, the neural plate is a key Development of the human body, developmental structure that serves as the basis for the nervous system. Cranial to the primitive node of the embryonic primitive streak, Ectoderm, ectodermal tissue thickens ...
into the
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, ...
. The embryo at this stage is termed the
neurula A neurula is a vertebrate embryo at the early stage of development in which neurulation occurs. The neurula stage is preceded by the gastrula stage; consequentially, neurulation is preceded by gastrulation. Neurulation marks the beginning of the p ...
. The process begins when the
notochord The notochord is an elastic, rod-like structure found in chordates. In vertebrates the notochord is an embryonic structure that disintegrates, as the vertebrae develop, to become the nucleus pulposus in the intervertebral discs of the verteb ...
induces the formation of the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
(CNS) by signaling the ectoderm
germ layer A germ layer is a primary layer of cell (biology), cells that forms during embryonic development. The three germ layers in vertebrates are particularly pronounced; however, all eumetazoans (animals that are sister taxa to the sponges) produce tw ...
above it to form the thick and flat
neural plate In embryology, the neural plate is a key Development of the human body, developmental structure that serves as the basis for the nervous system. Cranial to the primitive node of the embryonic primitive streak, Ectoderm, ectodermal tissue thickens ...
. The neural plate folds in upon itself to form the
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, ...
, which will later differentiate into the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal c ...
and the
brain The brain is an organ (biology), organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head (cephalization), usually near organs for ...
, eventually forming the central nervous system. Computer simulations found that cell wedging and differential proliferation are sufficient for mammalian neurulation. Different portions of the neural tube form by two different processes, called primary and secondary neurulation, in different species. * In primary neurulation, the neural plate creases inward until the edges come in contact and fuse. * In secondary neurulation, the tube forms by hollowing out of the interior of a solid precursor.


Primary neurulation


Primary neural induction

The concept of induction originated in work by Pandor in 1817. The first experiments proving induction were attributed by Viktor Hamburger to independent discoveries of both
Hans Spemann Hans Spemann (; 27 June 1869 – 9 September 1941) was a German embryologist who was awarded a Nobel Prize in Physiology or Medicine in 1935 for his student Hilde Mangold's discovery of the effect now known as embryonic induction, an influenc ...
of Germany in 1901 and Warren Lewis of the USA in 1904. It was
Hans Spemann Hans Spemann (; 27 June 1869 – 9 September 1941) was a German embryologist who was awarded a Nobel Prize in Physiology or Medicine in 1935 for his student Hilde Mangold's discovery of the effect now known as embryonic induction, an influenc ...
who first popularized the term “primary neural induction” in reference to the first differentiation of ectoderm into neural tissue during neurulation.Spemann, H. & H. Mangold, Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren/On induction of embryo anlagen by implantation of organizers of other species. Archiv mikroskop. Anat. Entwicklungsmech. 100, 599-638 1924 It was called "primary" because it was thought to be the first induction event in embryogenesis. The Nobel prize-winning experiment was done by his student Hilda Mangold. Ectoderm from the region of the dorsal lip of the blastopore of a developing salamander embryo was transplanted into another embryo and this "organizer" tissue “induced” the formation of a full secondary axis changing surrounding tissue in the original embryo from ectodermal to neural tissue. The tissue from the donor embryo was therefore referred to as the inducer because it induced the change. While the organizer is the dorsal lip of the blastopore, this is not one set of cells, but rather is a constantly changing group of cells that migrate over the dorsal lip of the blastopore by forming apically constricted bottle cells. At any given time during
gastrulation Gastrulation is the stage in the early embryonic development of most animals, during which the blastula (a single-layered hollow sphere of cells), or in mammals, the blastocyst, is reorganized into a two-layered or three-layered embryo known as ...
there will be different cells that make up the organizer. Subsequent work on inducers by scientists over the 20th century demonstrated that not only could the dorsal lip of the blastopore act as an inducer but so could a huge number of other seemingly unrelated items. This began when boiled ectoderm was found to still be able to induce by
Johannes Holtfreter Johannes Holtfreter (January 9, 1901 – November 13, 1992) was a German-American developmental biologist whose primary focus was the “organizer,” a part of the embryo essential for the development of the proper body plan. Biography Holtfr ...
. Items as diverse as low pH, cyclic AMP, even floor dust could act as inducers leading to considerable consternation. Even tissue which could not induce when living could induce when boiled. Other items such as lard, wax, banana peels and coagulated frog’s blood did not induce. The hunt for a chemically based inducer molecule was taken up by developmental molecular biologists and a vast literature of items shown to have inducer abilities continued to grow. More recently, the inducer molecule has been attributed to genes and in 1995, there was a call for all the genes involved in primary neural induction and all their interactions to be catalogued in an effort to determine “the molecular nature of Spemann’s organizer”. Several other proteins and growth factors have also been invoked as inducers including soluble
growth factors A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regu ...
such as
bone morphogenetic protein Bone morphogenetic proteins (BMPs) are a group of growth factors also known as cytokines and as metabologens. Professor Marshall Urist and Professor Hari Reddi discovered their ability to induce the formation of bone and cartilage, BMPs are now ...
, and a requirement for “inhibitory signals” such as noggin and
follistatin Follistatin, also known as activin-bindings protein, is a protein that in humans is encoded by the ''FST'' gene. Follistatin is an autocrine glycoprotein that is expressed in nearly all tissues of higher animals. Its primary function is the b ...
. Even before the term induction was popularized, several authors, beginning with Hans Driesch in 1894, suggested that primary neural induction might be mechanical in nature. A mechanochemical-based model for primary neural induction was proposed in 1985 by G.W. Brodland and R. Gordon. An actual physical wave of contraction has been shown to originate from the precise location of the Spemann organizer which then traverses the presumptive neural epithelium and a full working model of how primary neural inductions was proposed in 2006. There has long been a general reluctance in the field to consider the possibility that primary neural induction might be initiated by mechanical effects. A full explanation for primary neural induction remains yet to be found.


Shape change

As neurulation proceeds after induction, the cells of the neural plate become
high-columnar Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of many ...
and can be identified through microscopy as different from the surrounding presumptive epithelial ectoderm ( epiblastic endoderm in amniotes). The cells move laterally and away from the central axis and change into a truncated pyramid shape. This pyramid shape is achieved through
tubulin Tubulin in molecular biology can refer either to the tubulin protein superfamily of globular proteins, or one of the member proteins of that superfamily. α- and β-tubulins polymerize into microtubules, a major component of the eukaryotic cytosk ...
and
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
in the apical portion of the cell which constricts as they move. The variation in cell shapes is partially determined by the location of the nucleus within the cell, causing bulging in areas of the cells forcing the height and shape of the cell to change. This process is known as
apical constriction In morphogenesis, apical constriction is the process in which contraction of the apical side of a cell causes the cell to take on a wedged shape. Generally, this shape change is coordinated across many cells of an epithelial layer, generating ...
. The result is a flattening of the differentiating neural plate which is particularly obvious in salamanders when the previously round gastrula becomes a rounded ball with a flat top. See
Neural plate In embryology, the neural plate is a key Development of the human body, developmental structure that serves as the basis for the nervous system. Cranial to the primitive node of the embryonic primitive streak, Ectoderm, ectodermal tissue thickens ...
.


Folding

The process of the flat neural plate folding into the cylindrical neural tube is termed primary neurulation. As a result of the cellular shape changes, the neural plate forms the medial hinge point (MHP). The expanding epidermis puts pressure on the MHP and causes the neural plate to fold resulting in
neural folds The neural fold is a structure that arises during neurulation in the embryonic development of both birds and mammals among other organisms. This structure is associated with primary neurulation, meaning that it forms by the coming together of tis ...
and the creation of the
neural groove The neural groove is a shallow median groove of the neural plate between the neural folds of an embryo. The neural plate is a thick sheet of ectoderm surrounded on either side by the neural folds, two longitudinal ridges in front of the primitive ...
. The neural folds form dorsolateral hinge points (DLHP) and pressure on this hinge cause the neural folds to meet and fuse at the midline. The fusion requires the regulation of cell adhesion molecules. The neural plate switches from E-cadherin expression to N-cadherin and N-CAM expression to recognize each other as the same tissue and close the tube. This change in expression stops the binding of the neural tube to the epidermis. The notochord plays an integral role in the development of the neural tube. Prior to neurulation, during the migration of epiblastic endoderm cells towards the hypoblastic endoderm, the notochordal process opens into an arch termed the notochordal plate and attaches overlying neuroepithelium of the neural plate. The notochordal plate then serves as an anchor for the neural plate and pushes the two edges of the plate upwards while keeping the middle section anchored. Some of the notochodral cells become incorporated into the center section neural plate to later form the floor plate of the neural tube. The notochord plate separates and forms the solid notochord. The folding of the neural tube to form an actual tube does not occur all at once. Instead, it begins approximately at the level of the fourth
somite The somites (outdated term: primitive segments) are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryogenesis, embryonic stage of somitogenesis, along the head-to-tail axis in segmentation (biology), segmented animals. ...
at Carnegie stage 9 (around embryonic day 20 in
human Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
s). The lateral edges of the neural plate touch in the midline and join together. This continues both
cranial Standard anatomical terms of location are used to describe unambiguously the anatomy of humans and other animals. The terms, typically derived from Latin or Greek language, Greek roots, describe something in its standard anatomical position. Thi ...
ly (toward the head) and caudally (toward the tail). The openings that are formed at the cranial and caudal regions are termed the cranial and caudal neuropores. In
human Humans (''Homo sapiens'') or modern humans are the most common and widespread species of primate, and the last surviving species of the genus ''Homo''. They are Hominidae, great apes characterized by their Prehistory of nakedness and clothing ...
embryos, the cranial neuropore closes approximately on day 24 and the caudal neuropore on day 28. Failure of the cranial (superior) and caudal (inferior) neuropore closure results in conditions called
anencephaly Anencephaly is the absence of a major portion of the brain, skull, and scalp that occurs during embryonic development. It is a cephalic disorder that results from a neural tube defect that occurs when the rostral (head) end of the neural tube ...
and
spina bifida Spina bifida (SB; ; Latin for 'split spine') is a birth defect in which there is incomplete closing of the vertebral column, spine and the meninges, membranes around the spinal cord during embryonic development, early development in pregnancy. T ...
, respectively. Additionally, failure of the neural tube to close throughout the length of the body results in a condition called rachischisis.


Patterning

According to the
French Flag model The French flag model is a conceptual definition of a morphogen, described by Lewis Wolpert in the 1960s. A morphogen is defined as a signaling molecule that acts directly on cells (not through serial induction) to produce specific cellular resp ...
where stages of development are directed by gene product gradients, several genes are considered important for inducing patterns in the open neural plate, especially for the development of neurogenic placodes. These placodes first become evident histologically in the open neural plate. After
sonic hedgehog Sonic hedgehog protein (SHH) is a major signaling molecule of embryonic development in humans and animals, encoded by the ''SHH'' gene. This signaling molecule is key in regulating embryonic morphogenesis in all animals. SHH controls organoge ...
(SHH) signalling from the notochord induces its formation, the floor plate of the incipient neural tube also secretes SHH. After closure, the neural tube forms a basal or floor plate and a roof or
alar plate The alar plate (or alar lamina) is a neural structure in the embryonic nervous system, part of the dorsal side of the neural tube, that involves the communication of general somatic and general visceral sensory impulses. The caudal part later ...
in response to the combined effects of SHH and factors including
BMP4 Bone morphogenetic protein 4 is a protein that in humans is encoded by ''BMP4'' gene. BMP4 is found on chromosome 14q22-q23. BMP4 is a member of the bone morphogenetic protein family which is part of the transforming growth factor-beta superfami ...
secreted by the roof plate. The basal plate forms most of the ventral portion of the nervous system, including the motor portion of the spinal cord and brain stem; the alar plate forms the dorsal portions, devoted mostly to sensory processing. The dorsal epidermis expresses BMP4 and BMP7. The roof plate of the neural tube responds to those signals by expressing more BMP4 and other
transforming growth factor beta Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms (TGF-β 1 to 3, HGNC symbols TGFB1, TGFB2, TGFB3) and many other ...
(TGF-β) signals to form a dorsal/ventral gradient among the neural tube. The notochord expresses SHH. The floor plate responds to SHH by producing its own SHH and forming a gradient. These gradients allow for the differential expression of transcription factors.


Complexities of the model

Neural tube closure is not entirely understood. Closure of the neural tube varies by species. In mammals, closure occurs by meeting at multiple points which then close up and down. In birds, neural tube closure begins at one point of the midbrain and moves anteriorly and posteriorly.


Secondary neurulation

Primary neurulation develops into secondary neurulation when the caudal neuropore undergoes final closure. The cavity of the spinal cord extends into the neural cord. In secondary neurulation, the neural ectoderm and some cells from the endoderm form the medullary cord. The medullary cord condenses, separates and then forms cavities. These cavities then merge to form a single tube. Secondary neurulation occurs in the posterior section of most animals but it is better expressed in birds. Tubes from both primary and secondary neurulation eventually connect at around the sixth week of development. In humans, the mechanisms of secondary neurulation plays an important role given its impact on the proper formation of the human posterior spinal cord. Errors at any point in the process can yield problems. For example, retained medullary cord occurs due to a partial or complete arrest of secondary neurulation that creates a non-functional portion on the vestigial end.


Early brain development

The anterior portion of the
neural tube In the developing chordate (including vertebrates), the neural tube is the embryonic precursor to the central nervous system, which is made up of the brain and spinal cord. The neural groove gradually deepens as the neural folds become elevated, ...
forms the three main parts of the brain: the
forebrain In the anatomy of the brain of vertebrates, the forebrain or prosencephalon is the rostral (forward-most) portion of the brain. The forebrain controls body temperature, reproductive functions, eating, sleeping, and the display of emotions. Ve ...
(
prosencephalon In the anatomy of the brain of vertebrates, the forebrain or prosencephalon is the rostral (forward-most) portion of the brain. The forebrain controls body temperature, reproductive functions, eating, sleeping, and the display of emotions. Ve ...
),
midbrain The midbrain or mesencephalon is the uppermost portion of the brainstem connecting the diencephalon and cerebrum with the pons. It consists of the cerebral peduncles, tegmentum, and tectum. It is functionally associated with vision, hearing, mo ...
(
mesencephalon The midbrain or mesencephalon is the uppermost portion of the brainstem connecting the diencephalon and cerebrum with the pons. It consists of the cerebral peduncles, tegmentum, and tectum. It is functionally associated with vision, hearing, mo ...
), and the
hindbrain The hindbrain, rhombencephalon (shaped like a rhombus) is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla, pons, and cerebellum. Together they support vital bodily processes. Met ...
(
rhombencephalon The hindbrain, rhombencephalon (shaped like a rhombus) is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla, pons, and cerebellum. Together they support vital bodily processes. Met ...
). These structures initially appear just after neural tube closure as bulges called
brain vesicle Brain vesicles are the bulge-like enlargements of the early development of the neural tube in vertebrates, which eventually give rise to the brain. Vesicle formation begins shortly after the rostral closure of the neural tube, at about embryoni ...
s in a pattern specified by anterior-posterior patterning genes, including
Hox genes Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the c ...
, other
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
s such as Emx, Otx, and Pax genes, and secreted signaling factors such as
fibroblast growth factor Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by the macrophages. They are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in ...
s (FGFs) and Wnts. These brain vesicles further divide into subregions. The prosencephalon gives rise to the
telencephalon The cerebrum (: cerebra), telencephalon or endbrain is the largest part of the brain, containing the cerebral cortex (of the two cerebral hemispheres) as well as several subcortical structures, including the hippocampus, basal ganglia, and olf ...
and
diencephalon In the human brain, the diencephalon (or interbrain) is a division of the forebrain (embryonic ''prosencephalon''). It is situated between the telencephalon and the midbrain (embryonic ''mesencephalon''). The diencephalon has also been known as t ...
, and the
rhombencephalon The hindbrain, rhombencephalon (shaped like a rhombus) is a developmental categorization of portions of the central nervous system in vertebrates. It includes the medulla, pons, and cerebellum. Together they support vital bodily processes. Met ...
generates the
metencephalon The metencephalon is the embryonic part of the hindbrain that differentiates into the pons and the cerebellum. It contains a portion of the fourth ventricle and the trigeminal nerve (CN V), abducens nerve (CN VI), facial nerve (CN VII), an ...
and
myelencephalon The myelencephalon or afterbrain is the most posterior region of the embryonic hindbrain, from which the medulla oblongata develops. Myelencephalon is from myel- (bone marrow or spinal cord) and encephalon (the vertebrate brain). Development ...
. The hindbrain, which is the evolutionarily most ancient part of the
chordate A chordate ( ) is a bilaterian animal belonging to the phylum Chordata ( ). All chordates possess, at some point during their larval or adult stages, five distinctive physical characteristics ( synapomorphies) that distinguish them from ot ...
brain, also divides into different segments called rhombomeres. The rhombomeres generate many of the most essential neural circuits needed for life, including those that control respiration and heart rate, and produce most of the
cranial nerve Cranial nerves are the nerves that emerge directly from the brain (including the brainstem), of which there are conventionally considered twelve pairs. Cranial nerves relay information between the brain and parts of the body, primarily to and f ...
s.
Neural crest cell The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, an ...
s form
ganglia A ganglion (: ganglia) is a group of neuron cell bodies in the peripheral nervous system. In the somatic nervous system, this includes dorsal root ganglia and trigeminal ganglia among a few others. In the autonomic nervous system, there a ...
above each rhombomere. The early neural tube is primarily composed of the germinal neuroepithelium, later called the ventricular zone, which contains primary neural stem cells called
radial glial cell Radial glial cells, or radial glial progenitor cells (RGPs), are Bipolar neuron, bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including as ...
s and serves as the main source of
neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
s produced during brain development through the process of
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). This occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells ( ...
.


Non-neural ectoderm tissue

Paraxial mesoderm Paraxial mesoderm, also known as presomitic or somitic mesoderm, is the area of mesoderm in the neurulating embryo that flanks and forms simultaneously with the neural tube. The cells of this region give rise to somites, blocks of tissue running ...
surrounding the notochord at the sides will develop into the
somites The somites (outdated term: primitive segments) are a set of bilaterally paired blocks of paraxial mesoderm that form in the embryonic stage of somitogenesis, along the head-to-tail axis in segmented animals. In vertebrates, somites subdivide in ...
(future muscles, bones, and contributes to the formation of limbs of the
vertebrate Vertebrates () are animals with a vertebral column (backbone or spine), and a cranium, or skull. The vertebral column surrounds and protects the spinal cord, while the cranium protects the brain. The vertebrates make up the subphylum Vertebra ...
).


Neural crest cells

Masses of tissue called the
neural crest The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, ...
that are located at the very edges of the lateral plates of the folding neural tube separate from the neural tube and migrate to become a variety of different but important cells. Neural crest cells will migrate through the embryo and will give rise to several cell populations, including pigment cells and the cells of the peripheral nervous system.


Neural tube defects

Failure of neurulation, especially failure of closure of the neural tube are among the most common and disabling
birth defect A birth defect is an abnormal condition that is present at birth, regardless of its cause. Birth defects may result in disabilities that may be physical, intellectual, or developmental. The disabilities can range from mild to severe. Birth de ...
s in humans, occurring in roughly 1 in every 500 live births. Failure of the rostral end of the neural tube to close results in
anencephaly Anencephaly is the absence of a major portion of the brain, skull, and scalp that occurs during embryonic development. It is a cephalic disorder that results from a neural tube defect that occurs when the rostral (head) end of the neural tube ...
, or lack of brain development, and is most often fatal. Failure of the caudal end of the neural tube to close causes a condition known as
spina bifida Spina bifida (SB; ; Latin for 'split spine') is a birth defect in which there is incomplete closing of the vertebral column, spine and the meninges, membranes around the spinal cord during embryonic development, early development in pregnancy. T ...
, in which the spinal cord fails to close.


See also

*
Embryonic differentiation waves A mechanochemistry, mechanochemical based model for Neurulation#Primary neural induction, primary neural induction was first proposed in 1985 by Brodland and Richard Gordon (theoretical biologist), Gordon. They proposed that there is a mecha ...
*
Neural fold The neural fold is a structure that arises during neurulation in the embryonic development of both birds and mammals among other organisms. This structure is associated with primary neurulation, meaning that it forms by the coming together of tis ...
*
Neural plate In embryology, the neural plate is a key Development of the human body, developmental structure that serves as the basis for the nervous system. Cranial to the primitive node of the embryonic primitive streak, Ectoderm, ectodermal tissue thickens ...
*
Neural crest The neural crest is a ridge-like structure that is formed transiently between the epidermal ectoderm and neural plate during vertebrate development. Neural crest cells originate from this structure through the epithelial-mesenchymal transition, ...


References


Further reading

* * * * * *


External links


Overview at uvm.edu

Neurulation Animation
{{Development of nervous system Embryology of nervous system