Nanofluids In Solar Collectors
   HOME

TheInfoList



OR:

Nanofluid-based direct solar collectors are
solar thermal collector A solar thermal collector collects heat by Absorption (optics), absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water panel, solar hot water heating, but may refer to large power generating installations ...
s where
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
s in a liquid medium can scatter and absorb
solar radiation Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically p ...
. They have recently received interest to efficiently distribute
solar energy Solar energy is the radiant energy from the Sun's sunlight, light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is a ...
.
Nanofluid A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, car ...
-based solar collector have the potential to harness solar
radiant energy In physics, and in particular as measured by radiometry, radiant energy is the energy of electromagnetic radiation, electromagnetic and gravitational radiation. As energy, its SI unit is the joule (J). The quantity of radiant energy may be calcul ...
more efficiently compared to conventional solar collectors. Nanofluids have recently found relevance in applications requiring quick and effective heat transfer such as industrial applications, cooling of microchips, microscopic fluidic applications, etc. Moreover, in contrast to conventional heat transfer (for solar thermal applications) like water, ethylene glycol, and molten salts, nanofluids are not transparent to solar radiant energy; instead, they absorb and scatter significantly the
solar irradiance Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ( ...
passing through them. Typical solar collectors use a black-surface absorber to collect the sun's heat energy which is then transferred to a
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
running in tubes embedded within. Various limitations have been discovered with these configuration and alternative concepts have been addressed. Among these, the use of nanoparticles suspended in a liquid is the subject of research. Nanoparticle materials including
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
,
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
,
carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with a diameter in the nanometre range ( nanoscale). They are one of the allotropes of carbon. Two broad classes of carbon nanotubes are recognized: * ''Single-walled carbon nanotubes'' (''S ...
s and carbon-nanohorns have been added to different base fluids and characterized in terms of their performance for improving heat transfer efficiency.


Background

Dispersing trace amounts of nanoparticles into common base fluids has a significant impact on the
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
as well as thermo physical properties of base
fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
, mainly increasing the thermal conductivity. This characteristic can be used to effectively capture and transport
solar radiation Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically p ...
. Enhancement of the solar irradiance absorption capacity leads to a higher heat transfer resulting in more efficient
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
as shown in figure 2. The
efficiency Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste. ...
of a solar
thermal A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
system is reliant on several
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
conversion steps, which are in turn governed by the effectiveness of the
heat transfer Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
processes. While higher conversion
efficiency Efficiency is the often measurable ability to avoid making mistakes or wasting materials, energy, efforts, money, and time while performing a task. In a more general sense, it is the ability to do things well, successfully, and without waste. ...
of solar to thermal energy is possible, the key components that need to be improved are the solar collector. An ideal solar collector will absorb the concentrated solar radiation, convert partially that incident solar radiation into heat and transfer the heat to the heat transfer fluid. Higher the heat transfer rate to the fluid leads to higher outlet temperature and higher temperatures leads to improved conversion efficiency in the power cycle. nanoparticles have several orders of magnitude higher
heat transfer coefficient In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the Proportional (mathematics), proportionality constant between the heat flux and the thermodynamic driving force for the Heat transfer, flow of heat ...
when transferring heat immediately to the surrounding fluid. This is simply due to the small size of
nanoparticle A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At ...
.


Mechanism for enhanced thermal conductivity of nanofluids

Keblinski et al. had named four main possible mechanisms for the anomalous increase in nanofluids heat transfer which are :


Brownian motion of nanoparticles

Due to Brownian motion particles randomly move through the liquid. And hence better transport of heat. Although it was originally believed that the fluid motions resulting from Brownian motion of the nanoparticles could explain the enhancement in heat transfer properties, this hypothesis was later rejected.


Liquid layering at liquid/particle interface

Liquid molecules can form a layer around the solid particles and there by enhance the local ordering of the atomic structure at the interface region.hence, the atomic structure of such liquid layer is more ordered than that of the bulk liquid.


Effect of nano-particles clustering

The effective volume of a
cluster may refer to: Science and technology Astronomy * Cluster (spacecraft), constellation of four European Space Agency spacecraft * Cluster II (spacecraft), a European Space Agency mission to study the magnetosphere * Asteroid cluster, a small ...
is considered much larger than the volume of the particles due to the lower packing fraction of the cluster. Since, heat can be transferred rapidly within the such clusters, the
volume fraction In chemistry and fluid mechanics, the volume fraction \varphi_i is defined as the volume of a constituent ''V'i'' divided by the volume of all constituents of the mixture ''V'' prior to mixing: :\varphi_i = \frac . Being dimensionless quantit ...
of the highly
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of Electric charge, charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow ...
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform *Phase space, a mathematica ...
is larger than the volume of solid, thus increasing its thermal conductivity


Comparison

In the last ten years, many experiments have been conducted numerically and analytically to validate the importance of nanofluids. From the table 1 it is clear that nanofluid-based collector have a higher efficiency than a conventional collector. So, it is clear that we can improve conventional collector simply by adding trace amounts of nano-particles. It has also been observed through numerical simulation that mean outlet
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
increase by increasing volume fraction of nanoparticles, length of tube and decreases by decreasing velocity.


Benefits of use of nanofluids in solar collectors

Nanofluids poses the following advantages as compared to conventional fluids which makes them suitable for use in solar collectors: *Absorption of solar energy will be maximized with change of the size, shape, material and
volume fraction In chemistry and fluid mechanics, the volume fraction \varphi_i is defined as the volume of a constituent ''V'i'' divided by the volume of all constituents of the mixture ''V'' prior to mixing: :\varphi_i = \frac . Being dimensionless quantit ...
of the nanoparticles. *The suspended nanoparticles increase the
surface area The surface area (symbol ''A'') of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the d ...
but decrease the
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
of the fluid due to the very small particle size. *The suspended nanoparticles enhance the thermal conductivity which results improvement in efficiency of heat transfer systems. *Properties of fluid can be changed by varying
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', '' molar concentration'', '' number concentration'', ...
of nanoparticles. *Extremely small size of nanoparticles ideally allows them to pass through pumps. *
Nanofluid A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, car ...
can be optically selective (high absorption in the solar range and low emittance in the
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
. The fundamental difference between the conventional and nanofluid-based collector lies in the mode of heating of the working fluid. In the former case the sunlight is absorbed by a surface, where as in the latter case the sunlight is directly absorbed by the working fluid (through
radiative transfer Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering process ...
). On reaching the receiver the solar radiations transfer
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
to the
nanofluid A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, car ...
via
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
and
absorption Absorption may refer to: Chemistry and biology *Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which su ...
.


See also

*
Nanofluid A nanofluid is a fluid containing nanometer-sized particles, called nanoparticles. These fluids are engineered colloidal suspensions of nanoparticles in a base fluid. The nanoparticles used in nanofluids are typically made of metals, oxides, car ...
*
Absorption Absorption may refer to: Chemistry and biology *Absorption (biology), digestion **Absorption (small intestine) *Absorption (chemistry), diffusion of particles of gas or liquid into liquid or solid materials *Absorption (skin), a route by which su ...
*
Fluid In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
*
Radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes: * ''electromagnetic radiation'' consisting of photons, such as radio waves, microwaves, infr ...
*
Scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
* Solar collector *
Solar energy Solar energy is the radiant energy from the Sun's sunlight, light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is a ...


References


Further reading

* * * {{cite journal, last=Kakaç, first=Sadik, author2=Anchasa Pramuanjaroenkij, date=2009, title=Review of convective heat transfer enhancement with nanofluids, journal=International Journal of Heat and Mass Transfer, volume=52, issue=13–14, pages=3187–3196, doi=10.1016/j.ijheatmasstransfer.2009.02.006, bibcode=2009IJHMT..52.3187K Nanoelectronics Nanoparticles Fluid mechanics Heat transfer Solar energy