HOME

TheInfoList



OR:

In
commutative algebra Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Promi ...
, an N-1 ring is an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
A whose
integral closure In commutative algebra, an element ''b'' of a commutative ring ''B'' is said to be integral over ''A'', a subring of ''B'', if there are ''n'' ≥ 1 and ''a'j'' in ''A'' such that :b^n + a_ b^ + \cdots + a_1 b + a_0 = 0. That is to say, ''b'' ...
in its quotient field is a finitely generated A- module. It is called a Japanese ring (or an N-2 ring) if for every finite extension L of its quotient field K, the integral closure of A in L is a finitely generated A-module (or equivalently a finite A-
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
). A ring is called universally Japanese if every finitely generated integral domain over it is Japanese, and is called a Nagata ring, named for Masayoshi Nagata, or a pseudo-geometric ring if it is Noetherian and universally Japanese (or, which turns out to be the same, if it is Noetherian and all of its quotients by a prime ideal are N-2 rings). A ring is called geometric if it is the local ring of an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers ...
or a completion of such a local ring , but this concept is not used much.


Examples

Fields and rings of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
s or
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a con ...
in finitely many indeterminates over fields are examples of Japanese rings. Another important example is a Noetherian integrally closed domain (e.g. a
Dedekind domain In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessari ...
) having a
perfect Perfect commonly refers to: * Perfection, completeness, excellence * Perfect (grammar), a grammatical category in some languages Perfect may also refer to: Film * Perfect (1985 film), ''Perfect'' (1985 film), a romantic drama * Perfect (2018 f ...
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
. On the other hand, a principal ideal domain or even a
discrete valuation ring In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal. This means a DVR is an integral domain ''R'' which satisfies any one of the following equivalent conditions: # ''R' ...
is not necessarily Japanese. Any quasi-excellent ring is a Nagata ring, so in particular almost all Noetherian rings that occur in algebraic geometry are Nagata rings. The first example of a Noetherian domain that is not a Nagata ring was given by . Here is an example of a discrete valuation ring that is not a Japanese ring. Choose a prime p and an infinite
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
field extension In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
K of a characteristic p field k, such that K^p\subseteq k. Let the discrete valuation ring R be the ring of formal power series over K whose coefficients generate a finite extension of k. If y is any formal power series not in R then the ring R /math> is not an N-1 ring (its integral closure is not a finitely generated module) so R is not a Japanese ring. If R is the subring of the
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variable ...
k _1, x_2, .../math> in infinitely many generators generated by the squares and cubes of all generators, and S is obtained from R by adjoining inverses to all elements not in any of the
ideals Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considered ...
generated by some x_n, then S is a Noetherian domain that is not an N-1 ring, in other words its integral closure in its quotient field is not a finitely generated S-module. Also S has a cusp singularity at every closed point, so the set of singular points is not closed.


References

* *Bosch, Güntzer, Remmert, ''Non-Archimedean Analysis'', Springer 1984, * *A. Grothendieck, J. Dieudonné
''Eléments de géométrie algébrique''
Ch. 0IV § 23, Publ. Math. IHES 20, (1964). *H. Matsumura, ''Commutative algebra'' , chapter 12. *Nagata, Masayoshi ''Local rings.'' Interscience Tracts in Pure and Applied Mathematics, No. 13 Interscience Publishers a division of John Wiley & Sons,New York-London 1962, reprinted by R. E. Krieger Pub. Co (1975) {{ISBN, 0-88275-228-6


External links

*http://stacks.math.columbia.edu/tag/032E Algebraic geometry Commutative algebra