HOME

TheInfoList



OR:

Muscle spindles are
stretch receptor Stretch receptors are mechanoreceptors responsive to distention of various organs and muscles, and are neurologically linked to the Medulla oblongata, medulla in the brain stem via Afferent nerve fiber, afferent nerve fibers. Examples include stre ...
s within the body of a
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
that primarily detect changes in the length of the muscle. They convey length information to the
central nervous system The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity o ...
via
afferent nerve fiber Afferent nerve fibers are axons (nerve fibers) of sensory neurons that carry sensory information from sensory receptors to the central nervous system. Many afferent projections ''arrive'' at a particular brain region. In the peripheral nerv ...
s. This information can be processed by the brain as
proprioception Proprioception ( ) is the sense of self-movement, force, and body position. Proprioception is mediated by proprioceptors, a type of sensory receptor, located within muscles, tendons, and joints. Most animals possess multiple subtypes of propri ...
. The responses of muscle spindles to changes in length also play an important role in regulating the contraction of muscles, for example, by activating
motor neuron A motor neuron (or motoneuron), also known as efferent neuron is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly o ...
s via the stretch reflex to resist muscle stretch. The muscle spindle has both sensory and motor components. * Sensory information conveyed by primary type Ia sensory fibers which spiral around muscle fibres within the spindle, and secondary type II sensory fibers * Activation of muscle fibres within the spindle by up to a dozen
gamma motor neuron A gamma motor neuron (γ motor neuron), also called gamma motoneuron, or fusimotor neuron, is a type of lower motor neuron that takes part in the process of muscle contraction, and represents about 30% of ( Aγ) fibers going to the muscle. Like ...
s and to a lesser extent by one or two
beta motor neuron Beta motor neurons (β motor neurons), also called beta motoneurons, are a few kind of lower motor neuron, along with alpha motor neurons and gamma motor neurons. Beta motor neurons innervate intrafusal fibers of muscle spindles with collatera ...
s ''.''


Structure

Muscle spindles are found within the belly of a
skeletal muscle Skeletal muscle (commonly referred to as muscle) is one of the three types of vertebrate muscle tissue, the others being cardiac muscle and smooth muscle. They are part of the somatic nervous system, voluntary muscular system and typically are a ...
. Muscle spindles are fusiform (spindle-shaped), and the specialized fibers that make up the muscle spindle are called intrafusal muscle fibers. The regular muscle fibers outside of the spindle are called extrafusal muscle fibers. Muscle spindles have a capsule of
connective tissue Connective tissue is one of the four primary types of animal tissue, a group of cells that are similar in structure, along with epithelial tissue, muscle tissue, and nervous tissue. It develops mostly from the mesenchyme, derived from the mesod ...
, and run parallel to the extrafusal muscle fibers unlike Golgi tendon organs which are oriented in series.


Composition

Muscle spindles are composed of 5–14 muscle fibers, of which there are three types: dynamic nuclear bag fibers (bag1 fibers), static nuclear bag fibers (bag2 fibers), and nuclear chain fibers. Primary type Ia sensory fibers (large diameter) spiral around all intrafusal muscle fibres, ending near the middle of each fibre. Secondary type II sensory fibers (medium diameter) end adjacent to the central regions of the static bag and chain fibres. These fibres send information by stretch-sensitive mechanically-gated ion-channels of the
axon An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
s. The motor part of the spindle is provided by motor neurons: up to a dozen
gamma motor neuron A gamma motor neuron (γ motor neuron), also called gamma motoneuron, or fusimotor neuron, is a type of lower motor neuron that takes part in the process of muscle contraction, and represents about 30% of ( Aγ) fibers going to the muscle. Like ...
s also known as ''fusimotor neurons''. These activate the muscle fibres within the spindle. Gamma motor neurons supply only muscle fibres within the spindle, whereas beta motor neurons supply muscle fibres both within and outside of the spindle. Activation of the neurons causes a contraction and stiffening of the end parts of the muscle spindle muscle fibers. Fusimotor neurons are classified as static or dynamic according to the type of muscle fibers they innervate and their effects on the responses of the Ia and II sensory neurons innervating the central, non-contractile part of the muscle spindle. * The static axons innervate the chain or static bag2 fibers. They increase the firing rate of Ia and II afferents at a given muscle length (see schematic of fusimotor action below). * The dynamic axons innervate the bag1 intrafusal muscle fibers. They increase the stretch-sensitivity of the Ia afferents by stiffening the bag1 intrafusal fibers.
Efferent nerve fiber Efferent nerve fibers are axons (nerve fibers) of efferent neurons that exit a particular region. These terms have a slightly different meaning in the context of the peripheral nervous system (PNS) and central nervous system (CNS). The efferen ...
s of gamma motor neurons also terminate in muscle spindles; they make
synapse In the nervous system, a synapse is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending o ...
s at either or both of the ends of the intrafusal muscle fibers and regulate the sensitivity of the sensory afferents, which are located in the non-contractile central (equatorial) region.


Function


Stretch reflex

When a muscle is stretched, primary type Ia sensory fibers of the muscle spindle respond to both changes in muscle length and velocity and transmit this activity to the
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue that extends from the medulla oblongata in the lower brainstem to the lumbar region of the vertebral column (backbone) of vertebrate animals. The center of the spinal c ...
in the form of changes in the rate of
action potentials An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. ...
. Likewise, secondary type II sensory fibers respond to muscle length changes (but with a smaller velocity-sensitive component) and transmit this signal to the spinal cord. The Ia afferent signals are transmitted monosynaptically to many alpha motor neurons of the receptor-bearing muscle. The reflexly evoked activity in the alpha motor neurons is then transmitted via their efferent axons to the extrafusal fibers of the muscle, which generate force and thereby resist the stretch. The Ia afferent signal is also transmitted polysynaptically through interneurons (Ia inhibitory interneurons), which inhibit alpha motorneurons of antagonist muscles, causing them to relax.


Sensitivity modification

The function of the gamma motor neurons is not to supplement the force of muscle contraction provided by the extrafusal fibers, but to modify the sensitivity of the muscle spindle sensory afferents to stretch. Upon release of
acetylcholine Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
by the active gamma motor neuron, the end portions of the intrafusal muscle fibers contract, thus elongating the non-contractile central portions (see "fusimotor action" schematic below). This opens stretch-sensitive
ion channels Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ...
of the sensory endings, leading to an influx of
sodium Sodium is a chemical element; it has Symbol (chemistry), symbol Na (from Neo-Latin ) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 element, group 1 of the peri ...
ions. This raises the
resting potential The relatively static membrane potential of quiescent cells is called the resting membrane potential (or resting voltage), as opposed to the specific dynamic electrochemical phenomena called action potential and graded membrane potential. The re ...
of the endings, thereby increasing the probability of
action potential An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly ri ...
firing, thus increasing the stretch-sensitivity of the muscle spindle afferents. Recent transcriptomic and proteomic studies have identified unique gene expression profiles specific to muscle spindle regions. Distinct macrophage populations, known as muscle spindle macrophages (MSMPs), have been observed, suggesting an immunological component in muscle spindle maintenance and function. Immunostaining and sequencing have enabled tissue-level identification of novel markers, contributing to an advanced cellular atlas of the muscle spindle. Regarding the structural-functional correlation; muscle spindle density is not uniform across the musculoskeletal system. Recent biomechanical modeling suggests that spindle abundance correlates with muscle fascicle length and fiber velocity during dynamic movement, emphasizing the relationship between muscle structure and proprioceptive requirements. How does the central nervous system control gamma fusimotor neurons? It has been difficult to record from gamma motor neurons during normal movement because they have very small axons. Several theories have been proposed, based on recordings from spindle afferents. * 1) ''Alpha-gamma coactivation.'' Here it is posited that gamma motor neurons are activated in parallel with alpha motor neurons to maintain the firing of spindle afferents when the extrafusal muscles shorten. * 2) ''Fusimotor set:'' Gamma motor neurons are activated according to the novelty or difficulty of a task. Whereas static gamma motor neurons are continuously active during routine movements such as locomotion, dynamic gamma motorneurons tend to be activated more during difficult tasks, increasing Ia stretch-sensitivity. * 3) ''Fusimotor template of intended movement.'' Static gamma activity is a "temporal template" of the expected shortening and lengthening of the receptor-bearing muscle. Dynamic gamma activity turns on and off abruptly, sensitizing spindle afferents to the onset of muscle lengthening and departures from the intended movement trajectory. * 4) ''Goal-directed preparatory control.'' Dynamic gamma activity is adjusted proactively during movement preparation in order to facilitate execution of the planned action. For example, if the intended movement direction is associated with stretch of the spindle-bearing muscle, Ia afferent and stretch reflex sensitivity from this muscle is reduced. Gamma fusimotor control therefore allows for the independent preparatory tuning of muscle stiffness according to task goals.


Development

Genetic pathways critical for spindle formation include neuregulin-1 signaling via ErbB receptors, which induce intrafusal fiber differentiation upon sensory innervation. Disruption of these pathways impairs proprioception, as seen in gene knockout models. It is also believed that muscle spindles play a critical role in sensorimotor development. Additionally, gain-of-function mutations in HRAS (e.g: G12S) observed in Costello syndrome are associated with increased spindle number, providing insight into genetic regulation of spindle density.


Clinical significance

Dysfunction in muscle spindle signaling has been implicated in sensory neuropathies and coordination disorders such as ataxia. Enhanced understanding of genetic mutations affecting spindle development (e.g. HRAS and Egr3-linked pathways) opens avenues for targeted therapies in proprioceptive deficits and neuromuscular diseases. After
stroke Stroke is a medical condition in which poor cerebral circulation, blood flow to a part of the brain causes cell death. There are two main types of stroke: brain ischemia, ischemic, due to lack of blood flow, and intracranial hemorrhage, hemor ...
or spinal cord injury in humans, spastic hypertonia ( spastic paralysis) often develops, whereby the stretch reflex in flexor muscles of the arms and extensor muscles of the legs is overly sensitive. This results in abnormal postures, stiffness and contractures. Hypertonia may be the result of over-sensitivity of alpha motor neurons and interneurons to the Ia and II afferent signals.


Additional images

Image:MuscleSpindle.svg, Muscle spindle Image:Muskelspindel3.png, Gamma fiber Image:Muskelspindel4.png, 1A fiber Image:Muskelspindel5.png, Alpha fiber Image:Fusimotor action.jpg, schematic of fusimotor action


Notes


References


External links

* {{DEFAULTSORT:Muscle Spindle Sensory systems