Molybdenum disulfide (or moly) is an
inorganic compound
An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemistry''.
Inorgan ...
composed of
molybdenum
Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
and
sulfur
Sulfur ( American spelling and the preferred IUPAC name) or sulphur ( Commonwealth spelling) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms ...
. Its
chemical formula
A chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecule, using chemical element symbols, numbers, and sometimes also other symbols, such as pare ...
is .
The compound is classified as a
transition metal dichalcogenide. It is a silvery black solid that occurs as the mineral
molybdenite
Molybdenite is a mineral of molybdenum disulfide, Mo S2. Similar in appearance and feel to graphite, molybdenite has a lubricating effect that is a consequence of its layered structure. The atomic structure consists of a sheet of molybdenum at ...
, the principal ore for molybdenum.
[Sebenik, Roger F. ''et al''. (2005) "Molybdenum and Molybdenum Compounds", ''Ullmann's Encyclopedia of Chemical Technology''. Wiley-VCH, Weinheim. ] is relatively unreactive. It is unaffected by dilute
acid
An acid is a molecule or ion capable of either donating a proton (i.e. Hydron, hydrogen cation, H+), known as a Brønsted–Lowry acid–base theory, Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis ...
s and
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
. In appearance and feel, molybdenum disulfide is similar to
graphite
Graphite () is a Crystallinity, crystalline allotrope (form) of the element carbon. It consists of many stacked Layered materials, layers of graphene, typically in excess of hundreds of layers. Graphite occurs naturally and is the most stable ...
. It is widely used as a
dry lubricant because of its low
friction
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
and robustness. Bulk is a
diamagnetic
Diamagnetism is the property of materials that are repelled by a magnetic field; an applied magnetic field creates an induced magnetic field in them in the opposite direction, causing a repulsive force. In contrast, paramagnetic and ferromagn ...
,
indirect bandgap semiconductor similar to
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
, with a bandgap of 1.23 eV.
[
]
Production
is naturally found as either molybdenite
Molybdenite is a mineral of molybdenum disulfide, Mo S2. Similar in appearance and feel to graphite, molybdenite has a lubricating effect that is a consequence of its layered structure. The atomic structure consists of a sheet of molybdenum at ...
, a crystalline mineral, or jordisite, a rare low temperature form of molybdenite. Molybdenite ore is processed by flotation to give relatively pure . The main contaminant is carbon. also arises by thermal treatment of virtually all molybdenum compounds with hydrogen sulfide
Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
or elemental sulfur and can be produced by metathesis reactions from molybdenum pentachloride.
Structure and physical properties
Crystalline phases
All forms of have a layered structure, in which a plane of molybdenum atoms is sandwiched by planes of sulfide ions. These three strata form a monolayer of . Bulk consists of stacked monolayers, which are held together by weak van der Waals interactions.
Crystalline exists in one of two phases, 2H- and 3R-, where the "H" and the "R" indicate hexagonal and rhombohedral symmetry, respectively. In both of these structures, each molybdenum atom exists at the center of a trigonal prismatic coordination sphere and is covalently bonded to six sulfide ions. Each sulfur atom has pyramidal coordination and is bonded to three molybdenum atoms. Both the 2H- and 3R-phases are semiconducting.
A third, metastable crystalline phase known as 1T- was discovered by intercalating 2H- with alkali metals
The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K),The symbols Na and K for sodium and potassium are derived from their Latin names, ''natrium'' and ''kalium''; these are still the origins of the names ...
. This phase has trigonal symmetry and is metallic. The 1T-phase can be stabilized through doping with electron donors such as rhenium
Rhenium is a chemical element; it has symbol Re and atomic number 75. It is a silvery-gray, heavy, third-row transition metal in group 7 of the periodic table. With an estimated average concentration of 1 part per billion (ppb), rhenium is one ...
, or converted back to the 2H-phase by microwave radiation. The 2H/1T-phase transition can be controlled via the incorporation of sulfur (S) vacancies.
Allotropes
Nanotube-like and buckyball-like molecules composed of are known.
Exfoliated flakes
While bulk in the 2H-phase is known to be an indirect-band gap semiconductor, monolayer has a direct band gap. The layer-dependent optoelectronic properties of have promoted much research in 2-dimensional -based devices. 2D can be produced by exfoliating bulk crystals to produce single-layer to few-layer flakes either through a dry, micromechanical process or through solution processing.
Micromechanical exfoliation, also pragmatically called " Scotch-tape exfoliation", involves using an adhesive material to repeatedly peel apart a layered crystal by overcoming the van der Waals forces. The crystal flakes can then be transferred from the adhesive film to a substrate. This facile method was first used by Konstantin Novoselov and Andre Geim to obtain graphene from graphite crystals. However, it can not be employed for a uniform 1-D layers because of weaker adhesion of to the substrate (either silicon, glass or quartz); the aforementioned scheme is good for graphene only. While Scotch tape is generally used as the adhesive tape, PDMS stamps can also satisfactorily cleave if it is important to avoid contaminating the flakes with residual adhesive.
Liquid-phase exfoliation can also be used to produce monolayer to multi-layer in solution. A few methods include lithium intercalation to delaminate the layers and sonication
image:Sonicator.jpg, A sonicator at the Weizmann Institute of Science during sonicationSonication is the act of applying sound energy to agitate particles in a sample, for various purposes such as the extraction of multiple compounds from plants, ...
in a high-surface tension solvent.
Mechanical properties
excels as a lubricating material (see below) due to its layered structure and low coefficient of friction. Interlayer sliding dissipates energy when a shear stress is applied to the material. Extensive work has been performed to characterize the coefficient of friction and shear strength of in various atmospheres. The shear strength
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a mater ...
of increases as the coefficient of friction increases. This property is called superlubricity
Superlubricity is a regime of relative motion in which friction vanishes or very nearly vanishes. However, the definition of "vanishing" friction level is not clear, which makes the term vague. As an ''ad hoc'' definition, a kinetic coefficient ...
. At ambient conditions, the coefficient of friction for was determined to be 0.150, with a corresponding estimated shear strength of 56.0 MPa. Direct methods of measuring the shear strength indicate that the value is closer to 25.3 MPa.
The wear resistance of in lubricating applications can be increased by doping with Cr. Microindentation experiments on nanopillars of Cr-doped found that the yield strength increased from an average of 821 MPa for pure (at 0% Cr) to 1017 MPa at 50% Cr. The increase in yield strength is accompanied by a change in the failure mode of the material. While the pure nanopillar fails through a plastic bending mechanism, brittle fracture modes become apparent as the material is loaded with increasing amounts of dopant.
The widely used method of micromechanical exfoliation has been carefully studied in to understand the mechanism of delamination in few-layer to multi-layer flakes. The exact mechanism of cleavage was found to be layer dependent. Flakes thinner than 5 layers undergo homogenous bending and rippling, while flakes around 10 layers thick delaminated through interlayer sliding. Flakes with more than 20 layers exhibited a kinking mechanism during micromechanical cleavage. The cleavage of these flakes was also determined to be reversible due to the nature of van der Waals bonding.
In recent years, has been utilized in flexible electronic applications, promoting more investigation into the elastic properties of this material. Nanoscopic bending tests using AFM cantilever tips were performed on micromechanically exfoliated flakes that were deposited on a holey substrate. The Young's modulus of monolayer flakes was 270 GPa, while the thicker flakes were stiffer, with a Young's modulus of 330 GPa. Molecular dynamic simulations found the in-plane Young's modulus of to be 229 GPa, which matches the experimental results within error.
Bertolazzi and coworkers also characterized the failure modes of the suspended monolayer flakes. The strain at failure ranges from 6 to 11%. The average yield strength of monolayer is 23 GPa, which is close to the theoretical fracture strength for defect-free .
The band structure of is sensitive to strain.
Chemical reactions
Molybdenum disulfide is stable in air and attacked only by aggressive reagent
In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s. It reacts with oxygen upon heating forming molybdenum trioxide
Molybdenum trioxide describes a family of inorganic compounds with the formula MoO3(H2O)n where n = 0, 1, 2. The anhydrous compound is produced on the largest scale of any molybdenum compound since it is the main intermediate produced when molybd ...
:
:
Chlorine
Chlorine is a chemical element; it has Symbol (chemistry), symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between ...
attacks molybdenum disulfide at elevated temperatures to form molybdenum pentachloride:
:
Intercalation reactions
Molybdenum disulfide is a host for formation of intercalation compounds. This behavior is relevant to its use as a cathode material in batteries. One example is a lithiated material, . With butyl lithium, the product is .[
]
Applications
Lubricant
Due to weak van der Waals interactions between the sheets of sulfide atoms, has a low coefficient of friction. in particle sizes in the range of 1–100 μm is a common dry lubricant. Few alternatives exist that confer high lubricity and stability at up to 350 °C in oxidizing environments. Sliding friction tests of using a pin on disc tester at low loads (0.1–2 N) give friction coefficient values of <0.1.
is often a component of blends and composites that require low friction. For example, it is added to graphite to improve sticking.[ A variety of oils and greases are used, because they retain their lubricity even in cases of almost complete oil loss, thus finding a use in critical applications such as ]aircraft engine
An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Aircraft using power components are referred to as powered flight. Most aircraft engines are either piston engines or gas turbin ...
s. When added to plastic
Plastics are a wide range of synthetic polymers, synthetic or Semisynthesis, semisynthetic materials composed primarily of Polymer, polymers. Their defining characteristic, Plasticity (physics), plasticity, allows them to be Injection moulding ...
s, forms a composite with improved strength as well as reduced friction. Polymers that may be filled with include nylon
Nylon is a family of synthetic polymers characterised by amide linkages, typically connecting aliphatic or Polyamide#Classification, semi-aromatic groups.
Nylons are generally brownish in color and can possess a soft texture, with some varieti ...
(trade name
A trade name, trading name, or business name is a pseudonym used by companies that do not operate under their registered company name. The term for this type of alternative name is fictitious business name. Registering the fictitious name with ...
Nylatron), Teflon
Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene, and has numerous applications because it is chemically inert. The commonly known brand name of PTFE-based composition is Teflon by Chemours, a spin-off from ...
and Vespel. Self-lubricating composite coatings for high-temperature applications consist of molybdenum disulfide and titanium nitride, using chemical vapor deposition
Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality, and high-performance, solid materials. The process is often used in the semiconductor industry to produce thin films.
In typical CVD, the wafer (electro ...
.
Examples of applications of -based lubricants include two-stroke engine
A two-stroke (or two-stroke cycle) engine is a type of internal combustion engine that completes a Thermodynamic power cycle, power cycle with two strokes of the piston, one up and one down, in one revolution of the crankshaft in contrast to a f ...
s (such as motorcycle engines), bicycle coaster brakes, automotive CV and universal joint
A universal joint (also called a universal coupling or U-joint) is a joint or coupling connecting rigid shafts whose axes are inclined to each other. It is commonly used in shafts that transmit rotary motion. It consists of a pair of hinges ...
s, ski waxes and bullet
A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constru ...
s.
Other layered inorganic materials that exhibit lubricating properties (collectively known as solid lubricants (or dry lubricants)) includes graphite, which requires volatile additives and hexagonal boron nitride
Boron nitride is a thermally and chemically resistant refractory compound of boron and nitrogen with the chemical formula B N. It exists in various crystalline forms that are isoelectronic to a similarly structured carbon lattice. The hexago ...
.
Catalysis
is employed as a cocatalyst for desulfurization in petrochemistry, for example, hydrodesulfurization
Hydrodesulfurization (HDS), also called hydrotreatment or hydrotreating, is a catalytic chemical process widely used to desulfurization, remove sulfur (S) from natural gas and from oil refinery, refined petroleum products, such as gasoline, g ...
. The effectiveness of the catalysts is enhanced by doping with small amounts of cobalt
Cobalt is a chemical element; it has Symbol (chemistry), symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. ...
or nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
. The intimate mixture of these sulfides is supported on alumina
Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula . It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly ...
. Such catalysts are generated in situ by treating molybdate/cobalt or nickel-impregnated alumina with or an equivalent reagent. Catalysis does not occur at the regular sheet-like regions of the crystallites, but instead at the edge of these planes.
finds use as a hydrogenation
Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to redox, reduce or Saturated ...
catalyst for organic synthesis
Organic synthesis is a branch of chemical synthesis concerned with the construction of organic compounds. Organic compounds are molecules consisting of combinations of covalently-linked hydrogen, carbon, oxygen, and nitrogen atoms. Within the gen ...
. As it is derived from a common transition metal
In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
, rather than a group 10 metal, is chosen when price or resistance to sulfur poisoning
Poisoning is the harmful effect which occurs when Toxicity, toxic substances are introduced into the body. The term "poisoning" is a derivative of poison, a term describing any chemical substance that may harm or kill a living organism upon ...
are of primary concern. is effective for the hydrogenation of nitro compounds
In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups (). The nitro group is one of the most common explosophores (functional group that makes a compound explosive) used globally. The nitr ...
to amines
In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
and can be used to produce secondary amines via reductive amination. The catalyst can also effect hydrogenolysis of organosulfur compounds
Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur der ...
, aldehyde
In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
s, ketone
In organic chemistry, a ketone is an organic compound with the structure , where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond C=O). The simplest ketone is acetone ( ...
s, phenols
In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (− O H) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, . Phenolic compounds ar ...
and carboxylic acids
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
to their respective alkane
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in whi ...
s. However, it suffers from low activity, often requiring hydrogen pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and eve ...
s above 96 MPa and temperatures above 185 °C.
Research
plays an important role in condensed matter physics
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
research.
Hydrogen evolution
and related molybdenum sulfides are efficient catalysts for hydrogen evolution, including the electrolysis of water
Electrolysis of water is using electricity to Water splitting, split water into oxygen () and hydrogen () gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture ...
; thus, are possibly useful to produce hydrogen for use in fuel cell
A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen fuel, hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most bat ...
s.
Oxygen reduction and evolution
@Fe-''N''-C core/shell nanosphere with atomic Fe-doped surface and interface (/Fe-''N''-C) can be used as a used an electrocatalyst for oxygen reduction and evolution reactions (ORR and OER) bifunctionally because of reduced energy barrier due to Fe-N4 dopants and unique nature of /Fe-''N''-C interface.
Microelectronics
As in graphene
Graphene () is a carbon allotrope consisting of a Single-layer materials, single layer of atoms arranged in a hexagonal lattice, honeycomb planar nanostructure. The name "graphene" is derived from "graphite" and the suffix -ene, indicating ...
, the layered structures of and other transition metal
In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinid ...
dichalcogenides exhibit electronic and optical properties that can differ from those in bulk. Bulk has an indirect band gap of 1.2 eV, while monolayers have a direct 1.8 eV electronic bandgap, supporting switchable transistors and photodetectors
Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical c ...
.
nanoflakes can be used for solution-processed fabrication of layered memristive and memcapacitive devices through engineering a / heterostructure sandwiched between silver electrodes. -based memristor
A memristor (; a portmanteau of ''memory resistor'') is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of ...
s are mechanically flexible, optically transparent and can be produced at low cost.
The sensitivity of a graphene field-effect transistor
The field-effect transistor (FET) is a type of transistor that uses an electric field to control the current through a semiconductor. It comes in two types: junction FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three termi ...
(FET) biosensor
A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector.
The ''sensitive biological element'', e.g. tissue, microorganisms, organelles, cell rece ...
is fundamentally restricted by the zero band gap of graphene, which results in increased leakage and reduced sensitivity. In digital electronics, transistors control current flow throughout an integrated circuit and allow for amplification and switching. In biosensing, the physical gate is removed and the binding between embedded receptor molecules and the charged target biomolecules to which they are exposed modulates the current.
has been investigated as a component of flexible circuits.
In 2017, a 115-transistor, 1-bit microprocessor
A microprocessor is a computer processor (computing), processor for which the data processing logic and control is included on a single integrated circuit (IC), or a small number of ICs. The microprocessor contains the arithmetic, logic, a ...
implementation was fabricated using two-dimensional .
has been used to create 2D 2-terminal memristor
A memristor (; a portmanteau of ''memory resistor'') is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage. It was described and named in 1971 by Leon Chua, completing a theoretical quartet of ...
s and 3-terminal memtransistors.
Valleytronics
Due to the lack of spatial inversion symmetry, odd-layer MoS2 is a promising material for valleytronics because both the CBM and VBM have two energy-degenerate valleys at the corners of the first Brillouin zone, providing an exciting opportunity to store the information of 0s and 1s at different discrete values of the crystal momentum. The Berry curvature is even under spatial inversion (P) and odd under time reversal (T), the valley Hall effect cannot survive when both P and T symmetries are present. To excite valley Hall effect in specific valleys, circularly polarized lights were used for breaking the T symmetry in atomically thin transition-metal dichalcogenides. In monolayer , the T and mirror symmetries lock the spin and valley indices of the sub-bands split by the spin-orbit couplings, both of which are flipped under T; the spin conservation suppresses the inter-valley scattering. Therefore, monolayer MoS2 have been deemed an ideal platform for realizing intrinsic valley Hall effect without extrinsic symmetry breaking.
Photonics and photovoltaics
also possesses mechanical strength, electrical conductivity, and can emit light, opening possible applications such as photodetectors. has been investigated as a component of photoelectrochemical (e.g. for photocatalytic hydrogen production) applications and for microelectronics applications.
Superconductivity of monolayers
Under an electric field monolayers have been found to superconduct at temperatures below 9.4 K.
See also
* Molybdenum diselenide
References
External links
*
{{sulfides
Molybdenum(IV) compounds
Disulfides
Non-petroleum based lubricants
Dry lubricants
Semiconductor materials
Transition metal dichalcogenides
Hydrogenation catalysts
Monolayers