Molecules In Stars
   HOME

TheInfoList



OR:

Stellar molecules are
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s that exist or form in
star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s. Such formations can take place when the
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
is low enough for molecules to form – typically around or cooler. Otherwise the stellar
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
is restricted to
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s and
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
in the forms of
gas Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
or – at very high temperatures – plasma.


Background

Matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
is made up by
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s (formed by
proton A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
s and other
subatomic particle In physics, a subatomic particle is a particle smaller than an atom. According to the Standard Model of particle physics, a subatomic particle can be either a composite particle, which is composed of other particles (for example, a baryon, lik ...
s). When the environment is right, atoms can join together and form
molecules A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry ...
, which give rise to most materials studied in
materials science Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and industries. The intellectual origins of materials sci ...
. But certain environments, such as high temperatures, don't allow atoms to form molecules, as the environmental energy exceeds that of the dissociation energy of the bonds within the molecule. Stars have very high temperatures, primarily in their interior, and therefore there are few molecules formed in stars. By the mid-18th century, scientists surmised that the source of the Sun's light was
incandescence Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electron ...
, rather than
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion ...
.


Evidence and research

Although the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
is a star, its
photosphere The photosphere is a star's outer shell from which light is radiated. It extends into a star's surface until the plasma becomes opaque, equivalent to an optical depth of approximately , or equivalently, a depth from which 50% of light will esc ...
has a low enough temperature of , and therefore molecules can form.
Water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
has been found on the Sun, and there is evidence of H2 in
white dwarf A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
stellar atmospheres. Cooler stars include
absorption band In spectroscopy, an absorption band is a range of wavelengths, frequency, frequencies or energies in the electromagnetic spectrum that are characteristic of a particular transition from initial to final state in a substance. According to quantum ...
spectra that are characteristic of molecules. Similar absorption bands can be found through observation of solar
sun spot Sun SPOT (Sun Small Programmable Object Technology) was a sensor node for a wireless sensor network developed by Sun Microsystems announced in 2007. The device used the IEEE 802.15.4 standard for its networking, and unlike other available sen ...
s, which are cool enough to allow persistence of stellar molecules. Molecules found in the Sun include MgH, CaH, FeH, CrH, NaH, OH, SiH, VO, and TiO. Others include CN, CH, MgF, NH, C2, SrF, ZrO, YO, ScO, and BH. Stars of most types can contain molecules, even the Ap category of A-type stars. Only the hottest O-, B-, and A-type stars have no detectable molecules. Carbon-rich white dwarfs, even though very hot, have spectral lines of C2 and CH.


Laboratory measurements

Measurements of simple molecules that may be found in stars are performed in laboratories to determine the wavelengths of the spectra lines. Also, it is important to measure the dissociation energy and
oscillator strength In spectroscopy, oscillator strength is a dimensionless quantity that expresses the probability of absorption or emission of electromagnetic radiation in transitions between energy levels of an atom or molecule. For example, if an emissive state h ...
s (how strongly the molecule interacts with electromagnetic radiation). These measurements are inserted into formula that can calculate the spectrum under different conditions of pressure and temperature. However, man-made conditions are often different from those in stars, because it is hard to achieve the temperatures, and also local thermal equilibrium, as found in stars, is unlikely. Accuracy of oscillator strengths and actual measurement of dissociation energy is usually only approximate.


Model atmosphere

A numerical model of a star's atmosphere will calculate pressures and temperatures at different depths, and can predict the spectrum for different elemental concentrations.


Application

The molecules in stars can be used to determine some characteristics of the star. The isotopic composition can be determined if the lines in the molecular spectrum are observed. The different masses of different isotopes cause vibration and rotation frequencies to significantly vary. Secondly the temperature can be determined, as the temperature will change the numbers of molecules in the different vibrational and rotational states. Some molecules are sensitive to the ratio of elements, and so indicate elemental composition of the star. Different molecules are characteristic of different kinds of stars, and are used to classify them. Because there can be numerous spectral lines of different strength, conditions at different depths in the star can be determined. These conditions include temperature and speed towards or away from the observer. The spectrum of molecules has advantages over atomic spectral lines, as atomic lines are often very strong, and therefore only come from high in the atmosphere. Also the profile of the atomic spectral line can be distorted due to isotopes or overlaying of other spectral lines. The molecular spectrum is much more sensitive to temperature than atomic lines.


Detection

The following molecules have been detected in the atmospheres of stars:


See also

*
Stellar chemistry Stellar chemistry is the study of chemical composition of astronomical objects; stars in particular, hence the name stellar chemistry. The significance of stellar chemical composition is an open ended question at this point. Some research asserts ...


References

{{Portal bar, Physics, Stars, Solar System, Science Astrochemistry Molecules