Methanotrophic
   HOME

TheInfoList



OR:

Methanotrophs (sometimes called methanophiles) are
prokaryote A prokaryote (; less commonly spelled procaryote) is a unicellular organism, single-celled organism whose cell (biology), cell lacks a cell nucleus, nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Ancient Gree ...
s that metabolize
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
as their source of
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
chemical energy Chemical energy is the energy of chemical substances that is released when the substances undergo a chemical reaction and transform into other substances. Some examples of storage media of chemical energy include batteries, Schmidt-Rohr, K. (20 ...
. They are
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
or
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
, can grow aerobically or anaerobically, and require single-carbon compounds to survive. Methanotrophs are especially common in or near environments where methane is produced, although some methanotrophs can oxidize
atmospheric methane Atmospheric methane is the methane present in Earth's atmosphere. The concentration of atmospheric methane is increasing due to methane emissions, and is causing climate change. Methane is one of the most potent greenhouse gases. Methane's radiati ...
. Their habitats include wetlands, soils, marshes, rice paddies, landfills, aquatic systems (lakes, oceans, streams) and more. They are of special interest to researchers studying
global warming Present-day climate change includes both global warming—the ongoing increase in global average temperature—and its wider effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes ...
, as they play a significant role in the global methane budget, by reducing the amount of methane emitted to the atmosphere. Methanotrophy is a special case of methylotrophy, using single-carbon compounds that are more reduced than carbon dioxide. Some methylotrophs, however, can also make use of multi-carbon compounds; this differentiates them from methanotrophs, which are usually fastidious methane and methanol oxidizers. The only facultative methanotrophs isolated to date are members of the genus ''
Methylocella silvestris ''Methylocella silvestris'' is a bacterium from the genus ''Methylocella spp'' which are found in many acidic soils and wetlands. Historically, ''Methylocella silvestris'' was originally isolated from acidic forest soils in Germany, and it is de ...
'', '' Methylocapsa aurea'' and several '' Methylocystis'' strains. In functional terms, methanotrophs are referred to as methane-oxidizing bacteria. However, methane-oxidizing bacteria encompass other organisms that are not regarded as sole methanotrophs. For this reason, methane-oxidizing bacteria have been separated into subgroups: methane-assimilating bacteria (MAB) groups, the methanotrophs, and autotrophic ammonia-oxidizing bacteria (AAOB), which cooxidize methane.


Classification

Methanotrophs can be either
bacteria Bacteria (; : bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of Prokaryote, prokaryotic microorganisms. Typically a few micr ...
or
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
. Which methanotroph species is present is mainly determined by the availability of
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents. The electron accepting power of an electron acceptor is measured by its redox potential. In the ...
s. Many types of methane oxidizing bacteria (MOB) are known. Differences in the method of formaldehyde fixation and membrane structure divide these bacterial methanotrophs into several groups. There are several subgroups among the methanotrophic archaea. Methanotrophs have been historically classified broadly into three types which are defined by physiology, mechanism of methane metabolism, and morphology: Type I, II and X More recent literature has complicated these types by identifying overlapping characteristics in genetic makeup and the environmental conditions in which they are most likely to occur. Generally, Type I methanotrophs tend to dominate in cold, anaerobic environments, meaning there is limited oxygen availability, which often have high methane concentrations. However, at a high enough salinity, Type II will dominate even in cold temperatures. Type II methanotrophs tend to be more tolerant of stress and dominate in methane limited environments and acidic pHs. As methanotroph research expands, there is less of a clear line between Type I and II methanotrophs, so familial or species classifications are more useful for grouping these organisms as seen in Table 1. This table helps illuminate that methanotrophs that favor extreme environments, like hydrothermal vents, tend to uptake methane via the Calvin-Benson-Bassham Cycle (CBB). Research to understand why certain methanotrophs favor certain conditions and assimilation pathways is ongoing and relevant to predicting methanotroph responses to climate change.


Aerobic

Under aerobic conditions, methanotrophs combine
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
and
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
to form
formaldehyde Formaldehyde ( , ) (systematic name methanal) is an organic compound with the chemical formula and structure , more precisely . The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde. It is stored as ...
, which is then incorporated into organic compounds via the serine pathway or the ribulose monophosphate (RuMP) pathway, and carbon dioxide, which is released. Type I and type X methanotrophs are part of the
Gammaproteobacteria ''Gammaproteobacteria'' is a class of bacteria in the phylum ''Pseudomonadota'' (synonym ''Proteobacteria''). It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scienti ...
and they use the RuMP pathway to assimilate carbon. Type II methanotrophs are part of the
Alphaproteobacteria ''Alphaproteobacteria'' or ''α-proteobacteria'', also called ''α-Purple bacteria'' in earlier literature, is a class of bacteria in the phylum '' Pseudomonadota'' (formerly "Proteobacteria"). The '' Magnetococcales'' and '' Mariprofundales'' ar ...
and use the serine pathway of carbon assimilation. They also characteristically have a system of internal membranes within which methane
oxidation Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
occurs. Methanotrophs in
Gammaproteobacteria ''Gammaproteobacteria'' is a class of bacteria in the phylum ''Pseudomonadota'' (synonym ''Proteobacteria''). It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scienti ...
are known from the family '' Methylococcaceae''. Methanotrophs from
Alphaproteobacteria ''Alphaproteobacteria'' or ''α-proteobacteria'', also called ''α-Purple bacteria'' in earlier literature, is a class of bacteria in the phylum '' Pseudomonadota'' (formerly "Proteobacteria"). The '' Magnetococcales'' and '' Mariprofundales'' ar ...
are found in families '' Methylocystaceae'' and '' Beijerinckiaceae''. Aerobic methanotrophs are also known from the '' Methylacidiphilaceae'' (phylum Verrucomicrobiota). In contrast to
Gammaproteobacteria ''Gammaproteobacteria'' is a class of bacteria in the phylum ''Pseudomonadota'' (synonym ''Proteobacteria''). It contains about 250 genera, which makes it the most genus-rich taxon of the Prokaryotes. Several medically, ecologically, and scienti ...
and
Alphaproteobacteria ''Alphaproteobacteria'' or ''α-proteobacteria'', also called ''α-Purple bacteria'' in earlier literature, is a class of bacteria in the phylum '' Pseudomonadota'' (formerly "Proteobacteria"). The '' Magnetococcales'' and '' Mariprofundales'' ar ...
, methanotrophs in the phylum Verrucomicrobiota are mixotrophs. In 2021 a bacterial bin from the phylum
Gemmatimonadota The Gemmatimonadota are a phylum of bacteria established in 2003. The phylum contains two classes Gemmatimonadetes and Longimicrobia. Species The type species '' Gemmatimonas aurantiaca'' strain T-27T was isolated from activated sludge in a se ...
called "''Candidatus'' Methylotropicum kingii" showing aerobic methanotrophy was discovered thus suggesting methanotrophy to be present in the four bacterial phyla. In some cases, aerobic methane oxidation can take place in anoxic environments. "''Candidatus'' Methylomirabilis oxyfera" belongs to the phylum NC10 bacteria, and can catalyze nitrite reduction through an "intra-aerobic" pathway, in which internally produced oxygen is used to oxidise methane. In clear water lakes, methanotrophs can live in the anoxic water column, but receive oxygen from
photosynthetic Photosynthesis ( ) is a Biological system, system of biological processes by which Photoautotrophism, photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical ener ...
organisms, which they then directly consume to oxidize methane. No aerobic methanotrophic
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
are known.


Anaerobic

Under anoxic conditions, methanotrophs use different
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. Electron acceptors are oxidizing agents. The electron accepting power of an electron acceptor is measured by its redox potential. In the ...
s for methane oxidation. This can happen in
anoxic Anoxia means a total depletion in the level of oxygen, an extreme form of hypoxia or "low oxygen". The terms anoxia and hypoxia are used in various contexts: * Anoxic waters, sea water, fresh water or groundwater that are depleted of dissolved ox ...
habitats such as marine or lake
sediments Sediment is a solid material that is transported to a new location where it is deposited. It occurs naturally and, through the processes of weathering and erosion, is broken down and subsequently sediment transport, transported by the action of ...
, oxygen minimum zones, anoxic water columns, rice paddies and soils. Some specific methanotrophs can reduce nitrate, nitrite, iron, sulfate, or manganese ions and couple that to methane oxidation without syntrophic partner. Investigations in marine environments revealed that methane can be oxidized anaerobically by consortia of methane oxidizing
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
and
sulfate-reducing bacteria Sulfate-reducing microorganisms (SRM) or sulfate-reducing prokaryotes (SRP) are a group composed of sulfate-reducing bacteria (SRB) and sulfate-reducing archaea (SRA), both of which can perform anaerobic respiration utilizing sulfate () as termina ...
. This type of anaerobic oxidation of methane (AOM) mainly occurs in anoxic marine sediments. The exact mechanism is still a topic of debate but the most widely accepted theory is that the
archaea Archaea ( ) is a Domain (biology), domain of organisms. Traditionally, Archaea only included its Prokaryote, prokaryotic members, but this has since been found to be paraphyletic, as eukaryotes are known to have evolved from archaea. Even thou ...
use the reversed
methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. It is the fourth and final stage of anaerobic digestion. Organisms capable of producing methane for energy conservation h ...
pathway to produce carbon dioxide and another, unknown intermediate, which is then used by the sulfate-reducing bacteria to gain energy from the reduction of sulfate to
hydrogen sulfide Hydrogen sulfide is a chemical compound with the formula . It is a colorless chalcogen-hydride gas, and is toxic, corrosive, and flammable. Trace amounts in ambient atmosphere have a characteristic foul odor of rotten eggs. Swedish chemist ...
and water. The anaerobic methanotrophs are not related to the known aerobic methanotrophs; the closest cultured relatives to the anaerobic methanotrophs are the
methanogen Methanogens are anaerobic archaea that produce methane as a byproduct of their energy metabolism, i.e., catabolism. Methane production, or methanogenesis, is the only biochemical pathway for Adenosine triphosphate, ATP generation in methanogens. A ...
s in the
order Order, ORDER or Orders may refer to: * A socio-political or established or existing order, e.g. World order, Ancien Regime, Pax Britannica * Categorization, the process in which ideas and objects are recognized, differentiated, and understood ...
Methanosarcinales Methanosarcinales is an order of Archaea in the class '' Methanomicrobia'', phylum '' Methanobacteriota''. The order ''Methanosarcinales'' contains both methanogenic and methanotrophic lineages, although the latter have so far no pure culture r ...
.


Special species

'' Methylococcus capsulatus'' is used to produce animal feed from natural gas. In 2010 a new bacterium ''Candidatus'' Methylomirabilis oxyfera from the phylum NC10 was identified that can couple the anaerobic oxidation of methane to nitrite reduction without the need for a syntrophic partner. Based on studies of Ettwig et al., it is believed that ''M. oxyfera'' oxidizes methane anaerobically by utilizing oxygen produced internally from the dismutation of
nitric oxide Nitric oxide (nitrogen oxide, nitrogen monooxide, or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes den ...
into nitrogen and oxygen gas. In addition to providing a natural methane sink, methanotrophs provide other services for humans. In wastewater treatment plants, the application of a mix of methanotrophic bacteria has the potential to reduce costs and increase overall efficiency at removing nitrogen and byproducts. Depending upon environmental conditions, these methanotrophs can also produce biomolecules during the wastewater treatment process that are useful for a wide range of applications. For example, methanotrophs undergoing glycolysis produce exopolysaccharides (EPS) which can be extracted and used in medicine. A well-known EPS is hyaluronic acid which is used widely in cosmetics and wound care.


Taxonomy

Many methanotrophic cultures have been isolated and formally characterized over the past 5 decades, starting with the classical study of Whittenbury (Whittenbury et al., 1970).  Currently, 18 genera of cultivated aerobic methanotrophic ''Gammaproteobacteria'' and 5 genera of ''Alphaproteobacteria'' are known, represented by approx. 60 different species.


Methane oxidation

Methanotrophs oxidize methane by first initiating reduction of molecular oxygen (O2) to hydrogen peroxide (H2O2) and transformation of methane to methanol (CH3OH) using methane monooxygenases (MMOs). Furthermore, two types of MMO have been isolated from methanotrophs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). Cells containing pMMO have demonstrated higher growth capabilities and higher affinity for methane than sMMO containing cells. It is suspected that copper ions may play a key role in both pMMO regulation and the enzyme catalysis, thus limiting pMMO cells to more copper-rich environments than sMMO producing cells.


See also

* Borg (microbiology)


References

{{Reflist, 2


External links

* Anaerobic oxidation of methane
Methane-Eating Bug Holds Promise For Cutting Greenhouse Gas
Media Release, GNS Science, New Zealand Pseudomonadota