Metamerism (colour)
   HOME

TheInfoList



OR:

In
colorimetry Colorimetry is "the science and technology used to quantify and describe physically the human color perception". It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color p ...
, metamerism is a perceived matching of colors with different (nonmatching)
spectral power distribution In radiometry, photometry (optics), photometry, and color science, a spectral power distribution (SPD) measurement describes the Power (physics), power per unit area per unit wavelength of an illumination (lighting), illumination (radiant exitan ...
s. Colors that match this way are called metamers. A spectral power distribution describes the proportion of total light given off (emitted, transmitted, or reflected) by a color sample at each visible wavelength; it defines the complete information about the light coming from the sample. However, the human eye contains only three color receptors (three types of
cone cell Cone cells or cones are photoreceptor cells in the retina of the vertebrate eye. Cones are active in daylight conditions and enable photopic vision, as opposed to rod cells, which are active in dim light and enable scotopic vision. Most v ...
s), which means that all colors are reduced to three sensory quantities, called the
tristimulus value In 1931, the International Commission on Illumination (CIE) published the CIE 1931 color spaces which define the relationship between the visible spectrum and human color vision. The CIE color spaces are mathematical models that comprise a "stan ...
s. Metamerism occurs because each type of cone responds to the cumulative energy from a broad range of wavelengths, so that different combinations of light across all wavelengths can produce an equivalent receptor response and the same tristimulus values or color sensation. In color science, the set of sensory spectral sensitivity curves is numerically represented by color matching functions.


Sources of metamerism

Metameric matches are quite common, especially in near neutral (grayed or whitish colors) or dark colors. As colors become brighter or more saturated, the range of possible metameric matches (different combinations of light wavelengths) becomes smaller, especially in colors from surface reflectance spectra. Metameric matches made between two light sources provide the trichromatic basis of
colorimetry Colorimetry is "the science and technology used to quantify and describe physically the human color perception". It is similar to spectrophotometry, but is distinguished by its interest in reducing spectra to the physical correlates of color p ...
. The basis for nearly all commercially available color image reproduction processes such as photography, television, printing, and digital imaging, is the ability to make metameric color matches. Making metameric matches using reflective materials is more complex. The appearance of surface colors is defined by the product of the spectral reflectance curve of the material and the spectral emittance curve of the light source shining on it. As a result, the color of surfaces depends on the light source used to illuminate them.


Metameric failure

The term illuminant metameric failure or illuminant metamerism is sometimes used to describe situations in which two material samples match when viewed under one light source but not another. Most types of fluorescent lights produce an irregular or peaky spectral emittance curve, so that two materials under fluorescent light might not match, even though they are a metameric match to an incandescent "white" light source with a nearly flat or smooth emittance curve. Material colors that match under one source will often appear different under the other.
Inkjet printing Inkjet printing is a type of computer printing that recreates a digital image by propelling droplets of ink onto paper or plastic substrates. Inkjet printers were the most commonly used type of printer in 2008, and range from small inexpensi ...
is particularly susceptible, and inkjet
proofs Proof most often refers to: * Proof (truth), argument or sufficient evidence for the truth of a proposition * Alcohol proof, a measure of an alcoholic drink's strength Proof may also refer to: Mathematics and formal logic * Formal proof, a con ...
are best viewed under a 5000K
color temperature Color temperature is a parameter describing the color of a visible light source by comparing it to the color of light emitted by an idealized opaque, non-reflective body. The temperature of the ideal emitter that matches the color most clos ...
lighting source, with good color rendering properties, for color accuracy. Normally, material attributes such as translucency, gloss or surface texture are not considered in color matching. However geometric metameric failure or geometric metamerism can occur when two samples match when viewed from one angle, but then fail to match when viewed from a different angle. A common example is the color variation that appears in
pearlescent Iridescence (also known as goniochromism) is the phenomenon of certain surfaces that appear gradually to change colour as the angle of view or the angle of illumination changes. Iridescence is caused by wave interference of light in microstruc ...
automobile finishes or "metallic" paper; e.g.,
Kodak The Eastman Kodak Company, referred to simply as Kodak (), is an American public company that produces various products related to its historic basis in film photography. The company is headquartered in Rochester, New York, and is incorporated i ...
Endura Metallic,
Fujicolor , trading as , or simply Fuji, is a Japanese multinational conglomerate headquartered in Tokyo, Japan, operating in the areas of photography, optics, office and medical electronics, biotechnology, and chemicals. The company started as a manufa ...
Crystal Archive Digital Pearl. Observer metameric failure or observer metamerism can occur because of differences in
color vision Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity. Color perception is a part of the larger visual system and is mediated by a co ...
between observers. The common source of observer metameric failure is
colorblindness Color blindness, color vision deficiency (CVD) or color deficiency is the decreased ability to see color or differences in color. The severity of color blindness ranges from mostly unnoticeable to full absence of color perception. Color bl ...
, but it can also occur among "normal" observers. In all cases, the proportion of long-wavelength-sensitive
cones In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the ''apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines, ...
to medium-wavelength-sensitive cones in the retina, the profile of light sensitivity in each type of cone, and the amount of yellowing in the lens and macular pigment of the eye, differs from one person to the next. This alters the relative importance of different wavelengths in a spectral power distribution to each observer's color perception. As a result, two spectrally dissimilar lights or surfaces may produce a color match for one observer but fail to match when viewed by a second observer. Field-size metameric failure or field-size metamerism occurs because the relative proportions of the three cone types in the retina vary from the center of the visual field to the periphery, so that colors that match when viewed as very small, centrally fixated areas may appear different when presented as large color areas. In many industrial applications, large-field color matches are used to define color tolerances. Finally, device metamerism comes up due to the lack of consistency of colorimeters of the same or different manufacturers. Colorimeters basically consist of a combination of a matrix of sensor cells and optical filters, which present an unavoidable variance in their measurements. Moreover, devices built by different manufacturers can differ in their construction. The difference in the spectral compositions of two metameric stimuli is often referred to as the degree of metamerism. The sensitivity of a metameric match to any changes in the spectral elements that form the colors depend on the degree of metamerism. Two stimuli with a high degree of metamerism are likely to be very sensitive to any changes in the illuminant, material composition, observer, field of view, and so on. The word ''metamerism'' is often used to indicate a metameric failure rather than a match, or used to describe a situation in which a metameric match is easily degraded by a slight change in conditions, such as a change in the illuminant.


Measuring metamerism

The best-known measure of metamerism is the
color rendering index A color rendering index (CRI) is a quantitative measure of the ability of a light source to reveal the colors of various objects faithfully in comparison with a natural or standard light source. ''Color rendering'', as defined by the Internat ...
(CRI), which is a linear function of the mean
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is o ...
between the test and reference spectral reflectance vectors in the CIE 1964 color space. CRI has been replaced with an updated metric, IES:TM30, that provides a more accurate assessment of fidelity and adds features for assessing how a test light will change the saturation and hue of colorants as compared to the reference light. Another metric, for daylight simulators, is the MI, the CIE metamerism index, which is derived by calculating the mean
color difference In color science, color difference or color distance is the separation between two colors. This metric allows quantified examination of a notion that formerly could only be described with adjectives. Quantification of these properties is of great ...
of eight metamers (five in the
visible spectrum The visible spectrum is the spectral band, band of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' (or simply light). The optica ...
and three in the
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
range) in
CIELAB The CIELAB color space, also referred to as ''L*a*b*'', is a color space defined by the International Commission on Illumination (abbreviated CIE) in 1976. It expresses color as three values: ''L*'' for perceptual lightness and ''a*'' and ''b* ...
or
CIELUV In colorimetry, the CIE 1976 ''L''*, ''u''*, ''v''* color space, commonly known by its abbreviation CIELUV, is a color space adopted by the International Commission on Illumination (CIE) in 1976, as a simple-to-compute transformation of the 1931 ...
. The salient difference between CRI and MI is the color space used to calculate the color difference, the one used in CRI being obsolete and not
perceptually uniform In color science, color difference or color distance is the separation between two colors. This metric allows quantified examination of a notion that formerly could only be described with adjectives. Quantification of these properties is of great ...
. MI can be decomposed into MIvis and MIUV if only part of the spectrum is being considered. The numerical result can be interpreted by rounding into one of five letter categories:


Metamerism and industry

Using materials that are metameric color matches rather than spectral color matches is a significant problem in industries where color matching or color tolerances are important.


Automobile industry

A classic example is the automobile industry: the colorants used for interior fabrics, plastics and paints may be chosen to provide a good color match under a cool white fluorescent source, but the matches can disappear under different light sources (e.g. daylight or tungsten source). Furthermore, because of the differences in colorants, spectral matches are infrequent and metamerism often occurs.


Textile industry

Color matching in the textile
dyeing Dyeing is the application of dyes or pigments on textile materials such as fibers, yarns, and fabrics with the goal of achieving color with desired color fastness. Dyeing is normally done in a special solution containing dyes and particular ...
industry is essential. In this branch, three types of metamerism are commonly encountered: illuminant metamerism, observer metamerism and field-size metamerism. Due to the wide range of different illuminants in modern life, textile color matching is difficult to ensure. Metamerism on large textile items can be resolved by using different light sources when comparing colors. However, metamerism in smaller items such as textile fibers, is more difficult to be solved. This difficulty arises due to the necessity of a microscope, which has one single illumination source, to observe these small fibers. Therefore, metameric fibres cannot be distinguished neither macroscopically nor microscopically. A method which can solve metamerism in fibres combines
microscopy Microscopy is the technical field of using microscopes to view subjects too small to be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical mic ...
and
spectroscopy Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectro ...
, and is called microspectroscopy.


Paint industry

Color matches made in the paint industry are often aimed at achieving a ''spectral color match'' rather than just a tristimulus (metameric) color match under a given spectrum of light. A spectral color match attempts to give two colors the same spectral reflectance characteristic, making them a good metameric match with a low degree of metamerism, and thereby reducing the sensitivity of the resulting color match to changes in illuminant, or differences between observers. One way to circumvent metamerism in paints is by using exactly the same pigment and base color compositions in the reproductions as the ones which were used in the original. When the composition of pigment and base color is unknown, metamerism can be avoided only with the use of colorimetric devices.


Printing industry

The printing industry is also affected by metamerism. Inkjet printers do the mixing of colors under a specific light source, resulting in a modified appearance of original and copy under different light sources. One way to minimize metamerism in printing is by first measuring the spectral reflectance of an object or reproduction using a color measurement device. Then, one selects a set of ink compositions corresponding to the color reflectance factor, which are used by the inkjet printer for the reproduction. The process is repeated until original and reproduction present an acceptable degree of metamerism. Sometimes, however, one reaches the conclusion that an improved match is not possible with the materials available either due to gamut limitations or colorimetric properties.


See also

*
Tetrachromacy Tetrachromacy (from Ancient Greek ''tetra'', meaning "four" and ''chroma'', meaning "color") is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cell in the eye. Organisms ...
*
Hyperspectral imaging Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifyi ...


References

* * R.W.G Hunt. ''The Reproduction of Color'' (2nd ed.). Chichester: John Wiley & Sons, 2004. * Mark D. Fairchild. ''Color Appearance Models'' Addison Wesley Longman, 1998.


External links


Java applet demonstrating metamers
* Stanford University CS 17

demonstrating color matching.
Metamerism and why does paint color shift
{{Color topics Color