History
The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.Lilienfeld, Julius Edgar (1926-10-08) "Method and apparatus for controlling electric currents" In 1934, inventor Oskar Heil independently patented a similar device in Europe. In the 1940s,Composition
upright=1.2, Photomicrograph of two metal-gate MOSFETs in a test pattern. Probe pads for two gates and three source/drain nodes are labeled. Silicon remains the primaryOperation
upright=1.2, Metal–oxide–semiconductor structure on p-type siliconMetal–oxide–semiconductor structure
The traditional metal–oxide–semiconductor (MOS) structure is obtained by growing a layer ofMOS capacitors and band diagrams
The MOS capacitor structure is the heart of the MOSFET. Consider a MOS capacitor where the silicon base is of p-type. If a positive voltage is applied at the gate, holes which are at the surface of the p-type substrate will be repelled by the electric field generated by the voltage applied. At first, the holes will simply be repelled and what will remain on the surface will be immobile (negative) atoms of the acceptor type, which creates a depletion region on the surface. A hole is created by an acceptor atom, e.g., boron, which has one less electron than a silicon atom. Holes are not actually repelled, being non-entities; electrons are attracted by the positive field, and fill these holes. This creates a depletion region where no charge carriers exist because the electron is now fixed onto the atom and immobile. As the voltage at the gate increases, there will be a point at which the surface above the depletion region will be converted from p-type into n-type, as electrons from the bulk area will start to get attracted by the larger electric field. This is known as ''inversion''. The threshold voltage at which this conversion happens is one of the most important parameters in a MOSFET. In the case of a p-type MOSFET, bulk inversion happens when the intrinsic energy level at the surface becomes smaller than the Fermi level at the surface. This can be seen on a band diagram. The Fermi level defines the type of semiconductor in discussion. If the Fermi level is equal to the Intrinsic level, the semiconductor is of intrinsic, or pure type. If the Fermi level lies closer to the conduction band (valence band) then the semiconductor type will be of n-type (p-type). When the gate voltage is increased in a positive sense this will shift the intrinsic energy level band so that it will curve downwards towards the valence band. If the Fermi level lies closer to the valence band (for p-type), there will be a point when the Intrinsic level will start to cross the Fermi level and when the voltage reaches the threshold voltage, the intrinsic level does cross the Fermi level, and that is what is known as inversion. At that point, the surface of the semiconductor is inverted from p-type into n-type. If the Fermi level lies above the intrinsic level, the semiconductor is of n-type, therefore at inversion, when the intrinsic level reaches and crosses the Fermi level (which lies closer to the valence band), the semiconductor type changes at the surface as dictated by the relative positions of the Fermi and Intrinsic energy levels.Structure and channel formation
upright=1.5, ''Channel formation in nMOS MOSFET shown as band diagram'': Top panels: An applied gate voltage bends bands, depleting holes from surface (left). The charge inducing the bending is balanced by a layer of negative acceptor-ion charge (right). Bottom panel: A larger applied voltage further depletes holes but conduction band lowers enough in energy to populate a conducting channel. file:Illustration of C-V measurement.gif, upright=1.5, C–V profile for a bulk MOSFET with different oxide thickness. The leftmost part of the curve corresponds to accumulation. The valley in the middle corresponds to depletion. The curve on the right corresponds to inversion. A MOSFET is based on the modulation of charge concentration by a MOS capacitance between a ''body'' electrode and a ''gate'' electrode located above the body and insulated from all other device regions by a gate dielectric layer. If dielectrics other than an oxide are employed, the device may be referred to as a metal-insulator-semiconductor FET (MISFET). Compared to the MOS capacitor, the MOSFET includes two additional terminals (''source'' and ''drain''), each connected to individual highly doped regions that are separated by the body region. These regions can be either p or n type, but they must both be of the same type, and of opposite type to the body region. The source and drain (unlike the body) are highly doped as signified by a "+" sign after the type of doping. If the MOSFET is an n-channel or nMOS FET, then the source and drain are ''n+'' regions and the body is a ''p'' region. If the MOSFET is a p-channel or pMOS FET, then the source and drain are ''p+'' regions and the body is a ''n'' region. The source is so named because it is the source of the charge carriers (electrons for n-channel, holes for p-channel) that flow through the channel; similarly, the drain is where the charge carriers leave the channel. The occupancy of the energy bands in a semiconductor is set by the position of the Fermi level relative to the semiconductor energy-band edges. With sufficient gate voltage, the valence band edge is driven far from the Fermi level, and holes from the body are driven away from the gate. At larger gate bias still, near the semiconductor surface the conduction band edge is brought close to the Fermi level, populating the surface with electrons in an ''inversion layer'' or ''n-channel'' at the interface between the p region and the oxide. This conducting channel extends between the source and the drain, and current is conducted through it when a voltage is applied between the two electrodes. Increasing the voltage on the gate leads to a higher electron density in the inversion layer and therefore increases the current flow between the source and drain. For gate voltages below the threshold value, the channel is lightly populated, and only a very small subthreshold leakage current can flow between the source and the drain. When a negative gate-source voltage (positive source-gate) is applied, it creates a ''p-channel'' at the surface of the n region, analogous to the n-channel case, but with opposite polarities of charges and voltages. When a voltage less negative than the threshold value (a negative voltage for the p-channel) is applied between gate and source, the channel disappears and only a very small subthreshold current can flow between the source and the drain. The device may comprise a silicon on insulator device in which a buried oxide is formed below a thin semiconductor layer. If the channel region between the gate dielectric and the buried oxide region is very thin, the channel is referred to as an ultrathin channel region with the source and drain regions formed on either side in or above the thin semiconductor layer. Other semiconductor materials may be employed. When the source and drain regions are formed above the channel in whole or in part, they are referred to as raised source/drain regions.Modes of operation
upright=2, Source tied to the body to ensure no body bias: bottom left: Active mode at onset of pinch-off, bottom right: Active mode well into pinch-off – channel length modulation evident upright=1.2, Example application of an n-channel MOSFET. When the switch is pushed, the LED lights up. 090507 brunningsoftware.co.uk The operation of a MOSFET can be separated into three different modes, depending on the device's threshold voltage (), gate-to-source voltage (), and drain-to-source voltage (). In the following discussion, a simplified algebraic model is used. Modern MOSFET characteristics are more complex than the algebraic model presented here.For example, see The most recent version of the BSIM model is described in For an ''enhancement-mode, n-channel MOSFET'', the three operational modes are:Cutoff, subthreshold, and weak-inversion mode
Criterion: According to the basic threshold model, the transistor is turned off, and there is no conduction between drain and source. A more accurate model considers the effect of thermal energy on the Fermi–Dirac distribution of electron energies which allow some of the more energetic electrons at the source to enter the channel and flow to the drain. This results in a subthreshold current that is an exponential function of gate-source voltage. While the current between drain and source should ideally be zero when the transistor is being used as a turned-off switch, there is a weak-inversion current, sometimes called subthreshold leakage. In weak inversion where the source is tied to bulk, the current varies exponentially with as given approximately by: where = current at , the thermal voltage and the slope factor ''n'' is given by: with = capacitance of the depletion layer and = capacitance of the oxide layer. This equation is generally used, but is only an adequate approximation for the source tied to the bulk. For the source not tied to the bulk, the subthreshold equation for drain current in saturation is In a long-channel device, there is no drain voltage dependence of the current once , but as channel length is reduced drain-induced barrier lowering introduces drain voltage dependence that depends in a complex way upon the device geometry (for example, the channel doping, the junction doping and so on). Frequently, threshold voltage ''V''th for this mode is defined as the gate voltage at which a selected value of current ''I''D0 occurs, for example, ''I''D0 = 1μA, which may not be the same ''V''th-value used in the equations for the following modes. Some micropower analog circuits are designed to take advantage of subthreshold conduction. By working in the weak-inversion region, the MOSFETs in these circuits deliver the highest possible transconductance-to-current ratio, namely: , almost that of a bipolar transistor. The subthreshold '' I–V curve'' depends exponentially upon threshold voltage, introducing a strong dependence on any manufacturing variation that affects threshold voltage; for example: variations in oxide thickness, junction depth, or body doping that change the degree of drain-induced barrier lowering. The resulting sensitivity to fabricational variations complicates optimization for leakage and performance. file:IvsV mosfet.svg, upright=1.2, MOSFET drain current vs. drain-to-source voltage for several values of ; the boundary between ''linear'' (''Ohmic'') and ''saturation'' (''active'') modes is indicated by the upward curving parabola. file:Mosfet linear.svg, upright=1.2, Cross section of a MOSFET operating in the linear (Ohmic) region; strong inversion region present even near drain. file:Mosfet saturation.svg, upright=1.2, Cross section of a MOSFET operating in the saturation (active) region; channel exhibits channel pinching near drain.Triode mode or linear region (also known as the ohmic mode)
Criteria: and The transistor is turned on, and a channel has been created which allows current between the drain and the source. The MOSFET operates like a resistor, controlled by the gate voltage relative to both the source and drain voltages. The current from drain to source is modeled as: where is the charge-carrier effective mobility, is the gate width, is the gate length and is the gate oxide capacitance per unit area. The transition from the exponential subthreshold region to the triode region is not as sharp as the equations suggest.Saturation or active mode
Critera: and The switch is turned on, and a channel has been created, which allows current between the drain and source. Since the drain voltage is higher than the source voltage, the electrons spread out, and conduction is not through a narrow channel but through a broader, two- or three-dimensional current distribution extending away from the interface and deeper in the substrate. The onset of this region is also known as channel length modulation, pinch-off to indicate the lack of channel region near the drain. Although the channel does not extend the full length of the device, the electric field between the drain and the channel is very high, and conduction continues. The drain current is now weakly dependent upon drain voltage and controlled primarily by the gate-source voltage, and modeled approximately as: The additional factor involving λ, the channel-length modulation parameter, models current dependence on drain voltage due to theBody effect
upright=1.2, Band diagram showing body effect. ''V''SB splits Fermi levels Fn for electrons and Fp for holes, requiring larger ''V''GB to populate the conduction band in an nMOS MOSFET. The occupancy of the energy bands in a semiconductor is set by the position of the Fermi level#"Fermi level" in semiconductor physics, Fermi level relative to the semiconductor energy-band edges. Application of a source-to-substrate reverse bias of the source-body pn-junction introduces a split between the Fermi levels for electrons and holes, moving the Fermi level for the channel further from the band edge, lowering the occupancy of the channel. The effect is to increase the gate voltage necessary to establish the channel, as seen in the figure. This change in channel strength by application of reverse bias is called the "body effect." Using an nMOS example, the gate-to-body bias ''V''GB positions the conduction-band energy levels, while the source-to-body bias VSB positions the electron Fermi level near the interface, deciding occupancy of these levels near the interface, and hence the strength of the inversion layer or channel. The body effect upon the channel can be described using a modification of the threshold voltage, approximated by the following equation: : where ''V''TB is the threshold voltage with substrate bias present, and ''V''T0 is the zero-''V''SB value of threshold voltage, is the body effect parameter, and 2''φ''B is the approximate potential drop between surface and bulk across the depletion layer when and gate bias is sufficient to ensure that a channel is present. For a uniformly doped p-type substrate with bulk acceptor doping of ''NA'' per unit volume, : with ''ni'' the intrinsic mobile carrier density per unit volume in the bulk. See, for example, As this equation shows, a reverse bias causes an increase in threshold voltage ''V''TB and therefore demands a larger gate voltage before the channel populates. The body can be operated as a second gate, and is sometimes referred to as the "back gate"; the body effect is sometimes called the "back-gate effect".Circuit symbols
A variety of symbols are used for the MOSFET. The basic design is generally a line for the channel with the source and drain leaving it at right angles and then bending back at right angles into the same direction as the channel. Sometimes three line segments are used for enhancement mode and a solid line for depletion mode (see depletion and enhancement modes). Another line is drawn parallel to the channel for the gate. The ''bulk'' or ''body'' connection, if shown, is shown connected to the back of the channel with an arrow indicating pMOS or nMOS. Arrows always point from P to N, so an NMOS (N-channel in P-well or P-substrate) has the arrow pointing in (from the bulk to the channel). If the bulk is connected to the source (as is generally the case with discrete devices) it is sometimes angled to meet the source leaving the transistor. If the bulk is not shown (as is often the case in IC design as they are generally common bulk) an inversion symbol is sometimes used to indicate PMOS, alternatively an arrow on the source may be used in the same way as for bipolar transistors (out for nMOS, in for pMOS). Comparison of enhancement-mode and depletion-mode MOSFET symbols, along with JFET symbols. The orientation of the symbols, (most significantly the position of source relative to drain) is such that more positive voltages appear higher on the page than less positive voltages, implying conventional current flowing "down" the page: In schematics where G, S, D are not labeled, the detailed features of the symbol indicate which terminal is source and which is drain. For enhancement-mode and depletion-mode MOSFET symbols (in columns two and five), the source terminal is the one connected to the triangle. Additionally, in this diagram, the gate is shown as an "L" shape, whose input leg is closer to S than D, also indicating which is which. However, these symbols are often drawn with a T-shaped gate (as elsewhere on this page), so it is the triangle which must be relied upon to indicate the source terminal. For the symbols in which the bulk, or body, terminal is shown, it is here shown internally connected to the source (i.e., the black triangles in the diagrams in columns 2 and 5). This is a typical configuration, but by no means the only important configuration. In general, the MOSFET is a four-terminal device, and in integrated circuits many of the MOSFETs share a body connection, not necessarily connected to the source terminals of all the transistors.Applications
DigitalMOS integrated circuits
Following the development of clean rooms to reduce contamination to levels never before thought necessary, and ofCMOS circuits
The MOSFET is used in digital complementary metal–oxide–semiconductor ( CMOS) logic, which uses p- and n-channel MOSFETs as building blocks. Overheating is a major concern inDigital
The growth of digital technologies like theAnalog
The MOSFET's advantages in digital circuits do not translate into supremacy in all analog circuits. The two types of circuit draw upon different features of transistor behavior. Digital circuits switch, spending most of their time either fully on or fully off. The transition from one to the other is only of concern with regards to speed and charge required. Analog circuits depend on operation in the transition region where small changes to ''V'' can modulate the output (drain) current. The JFET and bipolar junction transistor (BJT) are preferred for accurate matching (of adjacent devices in integrated circuits), higher transconductance and certain temperature characteristics which simplify keeping performance predictable as circuit temperature varies. Nevertheless, MOSFETs are widely used in many types of analog circuits because of their own advantages (zero gate current, high and adjustable output impedance and improved robustness vs. BJTs which can be permanently degraded by even lightly breaking down the emitter-base). The characteristics and performance of many analog circuits can be scaled up or down by changing the sizes (length and width) of the MOSFETs used. By comparison, in bipolar transistors follow a different scaling law. MOSFETs' ideal characteristics regarding gate current (zero) and drain-source offset voltage (zero) also make them nearly ideal switch elements, and also make switched capacitor analog circuits practical. In their linear region, MOSFETs can be used as precision resistors, which can have a much higher controlled resistance than BJTs. In high power circuits, MOSFETs sometimes have the advantage of not suffering from thermal runaway as BJTs do. This means that complete analog circuits can be made on a silicon chip in a much smaller space and with simpler fabrication techniques. MOSFETS are ideally suited to switch inductive loads because of tolerance to inductive kickback. Some ICs combine analog and digital MOSFET circuitry on a single mixed-signal integrated circuit, making the needed board space even smaller. This creates a need to isolate the analog circuits from the digital circuits on a chip level, leading to the use of isolation rings and silicon on insulator (SOI). Since MOSFETs require more space to handle a given amount of power than a BJT, fabrication processes can incorporate BJTs and MOSFETs into a single device. Mixed-transistor devices are called bi-FETs (bipolar FETs) if they contain just one BJT-FET and BiCMOS (bipolar-CMOS) if they contain complementary BJT-FETs. Such devices have the advantages of both insulated gates and higher current density.Analog switches
MOSFET analog switches use the MOSFET to pass analog signals when on, and as a high impedance when off. Signals flow in both directions across a MOSFET switch. In this application, the drain and source of a MOSFET exchange places depending on the relative voltages of the source and drain electrodes. The source is the more negative side for an N-MOS or the more positive side for a P-MOS. All of these switches are limited on what signals they can pass or stop by their gate-source, gate-drain and source–drain voltages; exceeding the voltage, current, or power limits will potentially damage the switch. See Power MOSFET subsection down below.Single-type
This analog switch uses a four-terminal simple MOSFET of either P or N type. In the case of an n-type switch, the body is connected to the most negative supply (usually GND) and the gate is used as the switch control. Whenever the gate voltage exceeds the source voltage by at least a threshold voltage, the MOSFET conducts. The higher the voltage, the more the MOSFET can conduct. An N-MOS switch passes all voltages less than ''V'' − ''V''. When the switch is conducting, it typically operates in the linear (or ohmic) mode of operation, since the source and drain voltages will typically be nearly equal. In the case of a P-MOS, the body is connected to the most positive voltage, and the gate is brought to a lower potential to turn the switch on. The P-MOS switch passes all voltages higher than ''V'' − ''V'' (threshold voltage ''V'' is negative in the case of enhancement-mode P-MOS).Dual-type (CMOS)
This "complementary" or CMOS type of switch uses one P-MOS and one N-MOS FET to counteract the limitations of the single-type switch. The FETs have their drains and sources connected in parallel, the body of the P-MOS is connected to the high potential (''V''DD) and the body of the N-MOS is connected to the low potential (''gnd''). To turn the switch on, the gate of the P-MOS is driven to the low potential and the gate of the N-MOS is driven to the high potential. For voltages between ''V''DD − ''V''tn and ''gnd'' − ''V''tp, both FETs conduct the signal; for voltages less than ''gnd'' − ''V''tp, the N-MOS conducts alone; and for voltages greater than ''V''DD − ''V''tn, the P-MOS conducts alone. The voltage limits for this switch are the gate-source, gate-drain and source-drain voltage limits for both FETs. Also, the P-MOS is typically two to three times wider than the N-MOS, so the switch will be balanced for speed in the two directions. Tri-state circuitry sometimes incorporates a CMOS MOSFET switch on its output to provide for a low-ohmic, full-range output when on, and a high-ohmic, mid-level signal when off.Construction
Gate material
The primary criterion for the gate material is that it is a good conductor. Highly doped polycrystalline silicon is an acceptable but certainly not ideal conductor, and also suffers from some more technical deficiencies in its role as the standard gate material. Nevertheless, there are several reasons favoring use of polysilicon: # The threshold voltage (and consequently the drain to source on-current) is modified by the work function difference between the gate material and channel material. Because polysilicon is a semiconductor, its work function can be modulated by adjusting the type and level of doping. Furthermore, because polysilicon has the same bandgap as the underlying silicon channel, it is quite straightforward to tune the work function to achieve low threshold voltages for both NMOS and PMOS devices. By contrast, the work functions of metals are not easily modulated, so tuning the work function to obtain low threshold voltages (LVT) becomes a significant challenge. Additionally, obtaining low-threshold devices on both PMOS and NMOS devices sometimes requires the use of different metals for each device type. # The silicon-SiO2 interface has been well studied and is known to have relatively few defects. By contrast many metal-insulator interfaces contain significant levels of defects which can lead to Fermi level pinning, charging, or other phenomena that ultimately degrade device performance. # In the MOSFET IC fabrication process, it is preferable to deposit the gate material prior to certain high-temperature steps in order to make better-performing transistors. Such high temperature steps would melt some metals, limiting the types of metal that can be used in a metal-gate-based process. While polysilicon gates have been the de facto standard for the last twenty years, they do have some disadvantages which have led to their likely future replacement by metal gates. These disadvantages include: * Polysilicon is not a great conductor (approximately 1000 times more resistive than metals) which reduces the signal propagation speed through the material. The resistivity can be lowered by increasing the level of doping, but even highly doped polysilicon is not as conductive as most metals. To improve conductivity further, sometimes a high-temperature metal such as tungsten, titanium, cobalt, and more recently nickel is alloyed with the top layers of the polysilicon. Such a blended material is called silicide. The silicide-polysilicon combination has better electrical properties than polysilicon alone and still does not melt in subsequent processing. Also the threshold voltage is not significantly higher than with polysilicon alone, because the silicide material is not near the channel. The process in which silicide is formed on both the gate electrode and the source and drain regions is sometimes called salicide, self-aligned silicide. * When the transistors are extremely scaled down, it is necessary to make the gate dielectric layer very thin, around 1 nm in state-of-the-art technologies. A phenomenon observed here is the so-called poly depletion, where a depletion layer is formed in the gate polysilicon layer next to the gate dielectric when the transistor is in the inversion. To avoid this problem, a metal gate is desired. A variety of metal gates such asInsulator
As devices are made smaller, insulating layers are made thinner, often through steps of thermal oxidation or localised oxidation of silicon ( LOCOS). For nano-scaled devices, at some point tunneling of carriers through the insulator from the channel to the gate electrode takes place. To reduce the resulting leakage current, the insulator can be made thinner by choosing a material with a higher dielectric constant. To see how thickness and dielectric constant are related, note that Gauss's law connects field to charge as: : with ''Q'' = charge density, κ = dielectric constant, ε0 = permittivity of empty space and ''E'' = electric field. From this law it appears the same charge can be maintained in the channel at a lower field provided κ is increased. The voltage on the gate is given by: : with ''V''G = gate voltage, ''V''ch = voltage at channel side of insulator, and ''t''ins = insulator thickness. This equation shows the gate voltage will not increase when the insulator thickness increases, provided κ increases to keep ''t''ins / κ = constant (see the article on high-κ dielectrics for more detail, and the section in this article on gate-oxide leakage). The insulator in a MOSFET is a dielectric which can in any event be silicon oxide, formed by LOCOS but many other dielectric materials are employed. The generic term for the dielectric is gate dielectric since the dielectric lies directly below the gate electrode and above the channel of the MOSFET.Junction design
The source-to-body and drain-to-body junctions are the object of much attention because of three major factors: their design affects the current–voltage (''I–V'') characteristics of the device, lowering output resistance, and also the speed of the device through the loading effect of the junction capacitances, and finally, the component of stand-by power dissipation due to junction leakage. upright=1.2, MOSFET showing shallow junction extensions, raised source and drain and halo implant. Raised source and drain are separated from gate by oxide spacers. The drain induced barrier lowering of the threshold voltage and channel length modulation effects upon ''I-V'' curves are reduced by using shallow junction extensions. In addition, ''halo'' doping can be used, that is, the addition of very thin heavily doped regions of the same doping type as the body tight against the junction walls to limit the extent of depletion regions. The capacitive effects are limited by using raised source and drain geometries that make most of the contact area border thick dielectric instead of silicon. These various features of junction design are shown (with artistic license) in the figure.Scaling
upright=1.2, Trend of Intel CPU transistor gate length upright=1.2, MOSFET version of gain-boosted current mirror; M1 and M2 are in active mode, while M3 and M4 are in Ohmic mode, and act like resistors. The operational amplifier provides feedback that maintains a high output resistance. Over the past decades, the MOSFET (as used for digital logic) has continually been scaled down in size; typical MOSFET channel lengths were once severalHigher subthreshold conduction
As MOSFET geometries shrink, the voltage that can be applied to the gate must be reduced to maintain reliability. To maintain performance, the threshold voltage of the MOSFET has to be reduced as well. As threshold voltage is reduced, the transistor cannot be switched from complete turn-off to complete turn-on with the limited voltage swing available; the circuit design is a compromise between strong current in the ''on'' case and low current in the ''off'' case, and the application determines whether to favor one over the other. Subthreshold leakage (including subthreshold conduction, gate-oxide leakage and reverse-biased junction leakage), which was ignored in the past, now can consume upwards of half of the total power consumption of modern high-performance VLSI chips.Increased gate-oxide leakage
The gate oxide, which serves as insulator between the gate and channel, should be made as thin as possible to increase the channel conductivity and performance when the transistor is on and to reduce subthreshold leakage when the transistor is off. However, with current gate oxides with a thickness of around 1.2 nm (which in silicon is ~5Increased junction leakage
To make devices smaller, junction design has become more complex, leading to higher doping levels, shallower junctions, "halo" doping and so forth, all to decrease drain-induced barrier lowering (see the section on junction design). To keep these complex junctions in place, the annealing steps formerly used to remove damage and electrically active defects must be curtailed increasing junction leakage. Heavier doping is also associated with thinner depletion layers and more recombination centers that result in increased leakage current, even without lattice damage.Drain-induced barrier lowering and ''V''T roll off
Drain-induced barrier lowering (DIBL) and ''V''T roll off: Because of the short-channel effect, channel formation is not entirely done by the gate, but now the drain and source also affect the channel formation. As the channel length decreases, the depletion regions of the source and drain come closer together and make the threshold voltage (''V''T) a function of the length of the channel. This is called ''V''T roll-off. ''V''T also becomes function of drain to source voltage ''V''DS. As we increase the ''V''DS, the depletion regions increase in size, and a considerable amount of charge is depleted by the ''V''DS. The gate voltage required to form the channel is then lowered, and thus, the ''V''T decreases with an increase in ''V''DS. This effect is called drain induced barrier lowering (DIBL).Lower output resistance
For analog operation, good gain requires a high MOSFET output impedance, which is to say, the MOSFET current should vary only slightly with the applied drain-to-source voltage. As devices are made smaller, the influence of the drain competes more successfully with that of the gate due to the growing proximity of these two electrodes, increasing the sensitivity of the MOSFET current to the drain voltage. To counteract the resulting decrease in output resistance, circuits are made more complex, either by requiring more devices, for example the cascode and cascade amplifiers, or by feedback circuitry using operational amplifiers, for example a circuit like that in the adjacent figure.Lower transconductance
The transconductance of the MOSFET decides its gain and is proportional to hole orInterconnect capacitance
Traditionally, switching time was roughly proportional to the gate capacitance of gates. However, with transistors becoming smaller and more transistors being placed on the chip, interconnect capacitance (the capacitance of the metal-layer connections between different parts of the chip) is becoming a large percentage of capacitance. Signals have to travel through the interconnect, which leads to increased delay and lower performance.Heat production
The ever-increasing density of MOSFETs on an integrated circuit creates problems of substantial localized heat generation that can impair circuit operation. Circuits operate more slowly at high temperatures, and have reduced reliability and shorter lifetimes. Heat sinks and other cooling devices and methods are now required for many integrated circuits including microprocessors. Power MOSFETs are at risk of thermal runaway. As their on-state resistance rises with temperature, if the load is approximately a constant-current load then the power loss rises correspondingly, generating further heat. When the heatsink is not able to keep the temperature low enough, the junction temperature may rise quickly and uncontrollably, resulting in destruction of the device.Process variations
With MOSFETs becoming smaller, the number of atoms in the silicon that produce many of the transistor's properties is becoming fewer, with the result that control of dopant numbers and placement is more erratic. During chip manufacturing, random process variations affect all transistor dimensions: length, width, junction depths, oxide thickness ''etc.'', and become a greater percentage of overall transistor size as the transistor shrinks. The transistor characteristics become less certain, more statistical. The random nature of manufacture means we do not know which particular example MOSFETs actually will end up in a particular instance of the circuit. This uncertainty forces a less optimal design because the design must work for a great variety of possible component MOSFETs. See process variation, design for manufacturability,Modeling challenges
Modern ICs are computer-simulated with the goal of obtaining working circuits from the first manufactured lot. As devices are miniaturized, the complexity of the processing makes it difficult to predict exactly what the final devices look like, and modeling of physical processes becomes more challenging as well. In addition, microscopic variations in structure due simply to the probabilistic nature of atomic processes require statistical (not just deterministic) predictions. These factors combine to make adequate simulation and "right the first time" manufacture difficult.Other types
Dual-gate
upright=1.2, A ">FinFET The dual-gate MOSFET has aDepletion-mode
There are ''depletion-mode'' MOSFET devices, which are less commonly used than the standard ''enhancement-mode'' devices already described. These are MOSFET devices that are doped so that a channel exists even with zero voltage from gate to source. To control the channel, a negative voltage is applied to the gate (for an n-channel device), depleting the channel, which reduces the current flow through the device. In essence, the depletion-mode device is equivalent to a normally closed (on) switch, while the enhancement-mode device is equivalent to a normally open (off) switch. Due to their low noise figure in the RF region, and better gain, these devices are often preferred to bipolars in RF front-ends such as in TV sets. Depletion-mode MOSFET families include the BF960 by Siemens and Telefunken, and the BF980 in the 1980s by Philips (later to become NXP Semiconductors), whose derivatives are still used in AGC and RF mixer front-ends.Metal–insulator–semiconductor field-effect transistor (MISFET)
Metal–insulator–semiconductor field-effect-transistor, or ''MISFET'', is a more general term than ''MOSFET'' and a synonym to ''insulated-gate field-effect transistor'' (IGFET). All MOSFETs are MISFETs, but not all MISFETs are MOSFETs. The gate dielectric insulator in a MISFET is a substrate oxide (hence typicallyNMOS logic
For devices of equal current driving capability, n-channel MOSFETs can be made smaller than p-channel MOSFETs, due to p-channel charge carriers ( holes) having lower mobility than do n-channel charge carriers (Power MOSFET
upright=1.2, Cross section of a power MOSFET, with square cells. A typical transistor is constituted of several thousand cells. Power MOSFETs have a different structure. As with most power devices, the structure is vertical and not planar. Using a vertical structure, it is possible for the transistor to sustain both high blocking voltage and high current. The voltage rating of the transistor is a function of the doping and thickness of the N- epitaxial layer (see cross section), while the current rating is a function of the channel width (the wider the channel, the higher the current). In a planar structure, the current and breakdown voltage ratings are both a function of the channel dimensions (respectively width and length of the channel), resulting in inefficient use of the "silicon estate". With the vertical structure, the component area is roughly proportional to the current it can sustain, and the component thickness (actually the N-epitaxial layer thickness) is proportional to the breakdown voltage. Power MOSFETs with lateral structure are mainly used in high-end audio amplifiers and high-power PA systems. Their advantage is a better behaviour in the saturated region (corresponding to the linear region of a bipolar transistor) than the vertical MOSFETs. Vertical MOSFETs are designed for switching applications.Double-diffused metal–oxide–semiconductor ()
There are '' LDMOS'' (lateral double-diffused metal oxide semiconductor) and ''VDMOS'' (vertical double-diffused metal oxide semiconductor). Most power MOSFETs are made using this technology.Radiation-hardened-by-design (RHBD)
Semiconductor sub-micrometer and nanometer electronic circuits are the primary concern for operating within the normal tolerance in harshSee also
* * * * * * *References
External links