In
chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
, metal aquo complexes are
coordination compounds containing metal ions with only
water
Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
as a
ligand
In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
. These complexes are the predominant
species
A species () is often defined as the largest group of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of Taxonomy (biology), ...
in
aqueous solution
An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water ...
s of many metal
salt
In common usage, salt is a mineral composed primarily of sodium chloride (NaCl). When used in food, especially in granulated form, it is more formally called table salt. In the form of a natural crystalline mineral, salt is also known as r ...
s, such as metal
nitrate
Nitrate is a polyatomic ion with the chemical formula . salt (chemistry), Salts containing this ion are called nitrates. Nitrates are common components of fertilizers and explosives. Almost all inorganic nitrates are solubility, soluble in wa ...
s,
sulfates, and
perchlorates. They have the general
stoichiometry
Stoichiometry () is the relationships between the masses of reactants and Product (chemistry), products before, during, and following chemical reactions.
Stoichiometry is based on the law of conservation of mass; the total mass of reactants must ...
. Their behavior underpins many aspects of
environmental,
biological
Biology is the scientific study of life and living organisms. It is a broad natural science that encompasses a wide range of fields and unifying principles that explain the structure, function, growth, origin, evolution, and distribution of ...
, and
industrial chemistry
The chemical industry comprises the company, companies and other organizations that develop and produce industrial, specialty and other chemicals. Central to the modern world economy, the chemical industry converts raw materials (Petroleum, oil, ...
. This article focuses on complexes where water is the only ligand ("
homoleptic aquo complexes"), but of course many complexes are known to consist of a mix of aquo and other ligands.
Stoichiometry and structure
Hexa-aquo complexes
Most aquo complexes are mono-nuclear, with the general formula , with or 3; they have an
octahedral structure. The water molecules function as
Lewis bases, donating a pair of electrons to the metal ion and forming a dative covalent bond with it. Typical examples are listed in the following table.
Tutton's salts are crystalline compounds with the generic formula (where , , , , , or ).
Alum
An alum () is a type of chemical compound, usually a hydrated double salt, double sulfate salt (chemistry), salt of aluminium with the general chemical formula, formula , such that is a valence (chemistry), monovalent cation such as potassium ...
s, , are also double salts. Both sets of salts contain hexa-aquo metal cations.
Tetra-aquo complexes
Silver(I) forms , a rare example of a
tetrahedral
In geometry, a tetrahedron (: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular Face (geometry), faces, six straight Edge (geometry), edges, and four vertex (geometry), vertices. The tet ...
aquo complex.
[ Palladium(II) and platinum(II) were once thought to form square planar aquo complexes.]
Octa- and nona- aquo complexes
Aquo complexes of lanthanide(III) ions are eight- and nine-coordinate, reflecting the large size of the metal centres.
Binuclear-aquo complexes
In the binuclear ion each bridging water molecule donates one pair of electrons to one cobalt ion and another pair to the other cobalt ion. The Co-O (bridging) bond lengths are 213 picometers, and the Co-O (terminal) bond lengths are 10 pm shorter.
The complexes and contain metal-metal bonds.[
]
Hydroxo- and oxo- complexes of aquo ions
Monomeric aquo complexes of Nb, Ta, Mo, W, Mn, Tc, Re, and Os in oxidation states +4 to +7 have not been reported.[ For example, is unknown: the hydrolyzed species is the principal species in dilute solutions.][Baes, C.F.; Mesmer, R.E. ''The Hydrolysis of Cations'', (1976), Wiley, New York] With the higher oxidation states the effective electrical charge on the cation is further reduced by the formation of oxo-complexes.
Aquo complexes of the lanthanide cations
Lanthanide salts often or perhaps characteristically form aquo complexes. The homoleptic tricationic aquo complexes have nine water ligands.
Reactions
Some reactions considered fundamental to the behavior of metal aquo ions are ligand exchange, electron-transfer, and acid-base reactions.
Water exchange
Ligand exchange involves replacement of a water ligand ("coordinated water") with water in solution ("bulk water"). Often the process is represented using labeled water :
:
In the absence of isotopic labeling, the reaction is degenerate, meaning that the free energy change is zero.
Rates vary over many orders of magnitude. The main factor affecting rates is charge: highly charged metal aquo cations exchange their water more slowly than singly charged cations. Thus, the exchange rates for and differ by a factor of 109. Electron configuration is also a major factor, illustrated by the fact that the rates of water exchange for and differ by a factor of 109 also. Water exchange usually follows a dissociative substitution pathway, so the rate constants indicate first order reactions.
Electron exchange
This reaction usually applies to the interconversion of di- and trivalent metal ions, which involves the exchange of only one electron. The process is called self-exchange, meaning that the ion ''appears'' to exchange electrons with itself. The standard electrode potential for the following equilibrium:
:
:
shows the increasing stability of the lower oxidation state as atomic number increases. The very large value for the manganese couple is a consequence of the fact that octahedral manganese(II) has zero crystal field stabilization energy (CFSE) but manganese(III) has 3 units of CFSE.[ p. 236.]
Using labels to keep track of the metals, the self-exchange process is written as:
:
The rates of electron exchange vary widely, the variations being attributable to differing reorganization energies: when the 2+ and 3+ ions differ widely in structure, the rates tend to be slow. The electron transfer reaction proceeds via an outer sphere electron transfer. Most often large reorganizational energies are associated with changes in the population of the ''e''g level, at least for octahedral complexes.
Acid–base reactions
Solutions of metal aquo complexes are acidic owing to the ionization of protons from the water ligands. In dilute solution chromium(III) aquo complex has a p''K''a of about 4.3, affording a metal hydroxo complex:
:
Thus, the aquo ion is a weak acid, of comparable strength to acetic acid
Acetic acid , systematically named ethanoic acid , is an acidic, colourless liquid and organic compound with the chemical formula (also written as , , or ). Vinegar is at least 4% acetic acid by volume, making acetic acid the main compone ...
(p''K''a of about 4.8). This pKa is typical of the trivalent ions. The influence of the electronic configuration on acidity is shown by the fact that () is more acidic than (), despite the fact that Rh(III) is expected to be more electronegative. This effect is related to the stabilization of the pi-donor hydroxide ligand by the (''t''2g)5 Ru(III) centre.
In concentrated solutions, some metal hydroxo complexes undergo condensation reactions, known as olation, to form polymeric species. Many mineral
In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.John P. Rafferty, ed. (2011): Mi ...
s are assumed to form via olation. Aquo ions of divalent metal ions are less acidic than those of trivalent cations.
The hydrolyzed species often exhibit very different properties from the precursor hexaaquo complex. For example, water exchange in is 20000 times faster than in .
See also
* Hydration number
* Ligand field theory
* Metal ammine complex
* Metal ions in aqueous solution
References
{{Coordination complexes
Aqua complexes
Inorganic chemistry
Water chemistry