HOME

TheInfoList



OR:

Metabolic flux analysis (MFA) is an experimental fluxomics technique used to examine production and consumption rates of
metabolite In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, ...
s in a biological system. At an intracellular level, it allows for the quantification of metabolic fluxes, thereby elucidating the central
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run c ...
of the cell. Various methods of MFA, including isotopically stationary metabolic flux analysis, isotopically non-stationary metabolic flux analysis, and thermodynamics-based metabolic flux analysis, can be coupled with stoichiometric models of metabolism and
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
methods with isotopic mass resolution to elucidate the transfer of moieties containing isotopic tracers from one
metabolite In biochemistry, a metabolite is an intermediate or end product of metabolism. The term is usually used for small molecules. Metabolites have various functions, including fuel, structure, signaling, stimulatory and inhibitory effects on enzymes, ...
into another and derive information about the metabolic network. Metabolic flux analysis (MFA) has many applications such as determining the limits on the ability of a biological system to produce a biochemical such as
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a h ...
, predicting the response to
gene knockout A gene knockout (abbreviation: KO) is a genetic technique in which one of an organism's genes is made inoperative ("knocked out" of the organism). However, KO can also refer to the gene that is knocked out or the organism that carries the gene kno ...
, and guiding the identification of bottleneck enzymes in metabolic networks for
metabolic engineering Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enz ...
efforts. Metabolic flux analysis may use 13C-labeled isotope tracers for
isotopic labeling Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific ...
experiments. Nuclear magnetic resonance ( NMR) techniques and
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a '' mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is u ...
may then be used to measure metabolite labeling patterns to provide information for determination of pathway fluxes. Because MFA typically requires rigorous flux calculation of complex metabolic networks, publicly available software tools have been developed to automate MFA and reduce its computational burden.


Experimental method

Although using a stoichiometric balance and constraints of the metabolites comprising the metabolic network can elucidate fluxes, this approach has limitations including difficulty in stimulating fluxes through parallel, cyclic, and reversible pathways. Moreover, there is limited insight on how metabolites interconvert in a metabolic network without the use of isotope tracers. Thus, the use of isotopes has become the dominant technique for MFA.


Isotope labeling experiments

Isotope labeling experiments are optimal for gathering experimental data necessary for MFA. Because fluxes determine the isotopic labeling patterns of intracellular metabolites, measuring these patterns allows for inference of fluxes. The first step in the workflow of isotope labeling experiments is cell culture on labeled substrates. A substrate such as glucose is labeled by isotope(s), most often 13C, and is introduced into the culture medium. The medium also typically contains vitamins and essential amino acids to facilitate cells' growth. The labeled substrate is then metabolized by the cells, leading to the incorporation of the 13C tracer in other intracellular metabolites. After the cells reach steady-state physiology (i.e., constant metabolite concentrations in culture), cells are then lysed to extract metabolites. For mammalian cells, extraction involves quenching of cells using methanol to stop their cellular metabolism and subsequent extraction of metabolites using methanol and water extraction. Concentrations of metabolites and labeled isotope in metabolites of the extracts are measured by instruments like
liquid chromatography-mass spectrometry A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, ...
or NMR, which also provide information on the position and number of labeled atoms on the metabolites. This data are necessary for gaining insight into the dynamics of intracellular metabolism and metabolite turnover rates to infer metabolic flux.


Methodologies


Isotopically stationary

A predominant method for metabolic flux analysis is isotopically stationary MFA. This technique for flux quantitation is applicable under metabolic and isotopic steady-state, two conditions that assume that metabolite concentrations and
isotopomer Isotopomers or isotopic isomers are isomers with isotopic atoms, having the same number of each isotope of each element but differing in their positions. The result is that the molecules are either constitutional isomers or stereoisomers solely ...
distributions are not changing over time, respectively. Knowledge of the stoichiometric matrix (S) comprising the consumption and production of metabolites within biochemical reactions is needed to balance fluxes (v) around the assumed metabolic network model. Assuming metabolic steady-state, metabolic fluxes can thus be quantitated by solving the inverse of the following simple
linear algebra Linear algebra is the branch of mathematics concerning linear equations such as: :a_1x_1+\cdots +a_nx_n=b, linear maps such as: :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matric ...
equation: S \times v = 0 To reduce the possible solution space for flux distributions, isotopically stationary MFA requires additional stoichiometric constraints such as growth rates, substrate secretion and uptake, and product accumulation rates as well as upper and lower bounds for fluxes. Although isotopically stationary MFA allows precise deduction of metabolic fluxes through mathematical modeling, the analysis is limited to batch cultures during the exponential phase. Moreover, after addition of a labeled substrate, the time-point for when metabolic and isotopic steady-state may be accurately assumed can be difficult to determine.


Isotopically non-stationary

When isotope labeling is transient and has not yet equilibrated, isotopically non-stationary MFA (INST-MFA) is advantageous in deducing fluxes, particularly for systems with slow labeling dynamics. Similar to isotopically stationary MFA, this method requires mass and isotopomer balances to characterize the stoichiometry and atom transitions of the metabolic network. Unlike traditional MFA methods, however, INST-MFA requires applying
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contras ...
s to examine how isotopic labeling patterns of metabolites change over time; such examination can be accomplished by measuring changing isotopic labeling patterns over different time points to input into INST-MFA. INST-MFA is thus a powerful method for elucidating fluxes of systems with pathway bottlenecks and revealing metabolic
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological prop ...
s of
autotroph An autotroph or primary producer is an organism that produces complex organic compounds (such as carbohydrates, fats, and proteins) using carbon from simple substances such as carbon dioxide,Morris, J. et al. (2019). "Biology: How Life Works", ...
ic organisms. Although INST-MFA's computationally intensive demands previously hindered its widespread use, newly developed software tools have streamlined INST-MFA to decrease computational time and demand.


Thermodynamics-based

Thermodynamics-Based Metabolic Flux Analysis (TMFA) is a specialized type of metabolic flux analysis which utilizes linear thermodynamic constraints in addition to
mass balance In physics, a mass balance, also called a material balance, is an application of conservation of mass to the analysis of physical systems. By accounting for material entering and leaving a system, mass flows can be identified which might have be ...
constraints to generate thermodynamically feasible fluxes and metabolite activity profiles. TMFA takes into consideration only pathways and fluxes that are feasible by using the
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work (physics), work that may be performed by a closed system, thermodynamically closed system a ...
change of the reactions and activities of the metabolites that are part of the model. By calculating Gibbs free energies of metabolic reactions and consequently their thermodynamic favorability, TMFA facilitates identification of limiting pathway bottleneck reactions that may be ideal candidates for pathway regulation.


Software

Simulation
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
s are needed to model the biological system and calculate the fluxes of all pathways in a complex network. Several computational software exist to meet the need for efficient and precise tools for flux quantitation. Generally, the steps for applying modeling software towards MFA include metabolic reconstruction to compile all desired enzymatic reactions and metabolites, provide experimental information such as the labeling pattern of the substrate, define constraints such as growth equations, and minimizing the error between the experimental and simulated results to obtain final fluxes. Examples of MFA software include 13CFLUX2 and OpenFLUX, which evaluate 13C labeling experiments for flux calculation under metabolic and isotopically stationary conditions. The increasing interest in developing computation tools for INST-MFA calculation has also led to the development of software applications such as INCA, which was the first software capable of performing INST-MFA and simulating transient isotope labeling experiments.


Applications


Biofuel production

Metabolic flux analysis has been used to guide scale-up efforts for fermentation of biofuels. By directly measuring enzymatic reaction rates, MFA can capture the dynamics of cells' behavior and metabolic phenotypes in bioreactors during large-scale fermentations. For example, MFA models were used to optimize the conversion of
xylose Xylose ( grc, ξύλον, , "wood") is a sugar first isolated from wood, and named for it. Xylose is classified as a monosaccharide of the aldopentose type, which means that it contains five carbon atoms and includes an aldehyde functional gro ...
into ethanol in xylose-fermenting
yeast Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to consti ...
by using calculated flux distributions to determine maximal theoretical capacities of the selected yeast towards ethanol production.


Metabolic engineering

Identification of bottleneck enzymes determines rate-limiting reactions that limit the productivity of a biosynthetic pathway. Moreover, MFA can help predict unexpected phenotypes of genetically engineered strains by constructing a fundamental understanding of how fluxes are wired in engineered cells. For example, by calculating the Gibbs free energies of reactions in ''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus '' Esc ...
'' metabolism, TMFA facilitated identification of a thermodynamic bottleneck reaction in a genome-scale model of ''Escherichia coli.''


See also

*
Isotopic labeling Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific ...
*
Flux balance analysis Flux balance analysis (FBA) is a mathematical method for simulating metabolism in genome-scale reconstructions of metabolic networks. In comparison to traditional methods of modeling, FBA is less intensive in terms of the input data required for c ...
* Fluxomics *
Metabolic network modelling Metabolic network modelling, also known as metabolic network reconstruction or metabolic pathway analysis, allows for an in-depth insight into the molecular mechanisms of a particular organism. In particular, these models correlate the genome wi ...
*
Metabolomics Metabolomics is the scientific study of chemical processes involving metabolites, the small molecule substrates, intermediates, and products of cell metabolism. Specifically, metabolomics is the "systematic study of the unique chemical fingerprin ...
*
Metabolic engineering Metabolic engineering is the practice of optimizing genetic and regulatory processes within cells to increase the cell's production of a certain substance. These processes are chemical networks that use a series of biochemical reactions and enz ...


References

{{Reflist Systems biology