Dmitri Mendeleev
Dmitri Ivanovich Mendeleev ( ; ) was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known ele ...
published a
periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
of the
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
s in 1869 based on properties that appeared with some regularity as he laid out the elements from lightest to heaviest. When Mendeleev proposed his periodic table, he noted gaps in the table and predicted that then-unknown elements existed with properties appropriate to fill those gaps. He named them eka-boron, eka-aluminium, eka-silicon, and eka-manganese, with respective atomic masses of 44, 68, 72, and 100.
Prefixes
To give provisional names to his predicted elements,
Dmitri Mendeleev
Dmitri Ivanovich Mendeleev ( ; ) was a Russian chemist known for formulating the periodic law and creating a version of the periodic table of elements. He used the periodic law not only to correct the then-accepted properties of some known ele ...
used the prefixes ''
eka''- , ''
dvi''- or ''
dwi-'', and ''
tri''-, from the
Sanskrit
Sanskrit (; stem form ; nominal singular , ,) is a classical language belonging to the Indo-Aryan languages, Indo-Aryan branch of the Indo-European languages. It arose in northwest South Asia after its predecessor languages had Trans-cultural ...
names of digits 1, 2, and 3, depending upon whether the predicted element was one, two, or three places down from the known element of the same
group in his table. For example,
germanium
Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
was called eka-silicon until its discovery in 1886, and
rhenium was called dvi-
manganese
Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
before its discovery in 1926.
The ''eka-'' prefix was used by other theorists, and not only in Mendeleev's own predictions. Before the discovery,
francium
Francium is a chemical element; it has symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called '' actinium K'' after the natural decay chain in which it appears), has a half-l ...
was referred to as ''eka-caesium'', and
astatine
Astatine is a chemical element; it has Symbol (chemistry), symbol At and atomic number 85. It is the abundance of elements in Earth's crust, rarest naturally occurring element in the Earth's crust, occurring only as the Decay chain, decay product ...
as ''eka-iodine''. Sometimes, eka- is still used to refer to some of the
transuranic elements, for example, ''eka-
radium
Radium is a chemical element; it has chemical symbol, symbol Ra and atomic number 88. It is the sixth element in alkaline earth metal, group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, ...
'' for
unbinilium. However, the current official
IUPAC
The International Union of Pure and Applied Chemistry (IUPAC ) is an international federation of National Adhering Organizations working for the advancement of the chemical sciences, especially by developing nomenclature and terminology. It is ...
practice is to use a
systematic element name based on the
atomic number
The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of its atomic nucleus. For ordinary nuclei composed of protons and neutrons, this is equal to the proton number (''n''p) or the number of pro ...
of the element as the provisional name, instead of being based on its position in the periodic table as these prefixes require.
Original predictions
The four predicted elements lighter than the
rare-earth elements, ''eka-
boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
'' (''Eb'', under boron, B, 5), ''eka-
aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
'' (''Ea'' or ''El'',
under Al, 13), ''eka-
manganese
Manganese is a chemical element; it has Symbol (chemistry), symbol Mn and atomic number 25. It is a hard, brittle, silvery metal, often found in minerals in combination with iron. Manganese was first isolated in the 1770s. It is a transition m ...
'' (''Em'', under Mn, 25), and ''eka-
silicon
Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
'' (''Es'', under Si, 14), proved to be good predictors of the properties of
scandium
Scandium is a chemical element; it has Symbol (chemistry), symbol Sc and atomic number 21. It is a silvery-white metallic d-block, d-block element. Historically, it has been classified as a rare-earth element, together with yttrium and the lantha ...
(Sc, 21),
gallium
Gallium is a chemical element; it has Chemical symbol, symbol Ga and atomic number 31. Discovered by the French chemist Paul-Émile Lecoq de Boisbaudran in 1875,
elemental gallium is a soft, silvery metal at standard temperature and pressure. ...
(Ga, 31),
technetium
Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
(Tc, 43), and
germanium
Germanium is a chemical element; it has Symbol (chemistry), symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid or a nonmetal in the carbon group that is chemically ...
(Ge, 32) respectively, each of which fill the spot in the periodic table assigned by Mendeleev.
The names were written by Dmitri Mendeleev as (
ekabor), (
ekaaljuminij), (
ekamarganec), and (
ekasilicij) respectively, following the
pre-1917 Russian orthography.
Initial versions of the periodic table did not distinguish
rare earth element
The rare-earth elements (REE), also called the rare-earth metals or rare earths, and sometimes the lanthanides or lanthanoids (although scandium and yttrium, which do not belong to this series, are usually included as rare earths), are a set o ...
s from
transition elements, helping to explain both why Mendeleev's predictions for heavier unknown elements did not fare as well as those for the lighter ones and why they are not as well known or documented.
Scandium oxide
Scandium(III) oxide or scandia is a inorganic compound with formula scandium, Sc2oxygen, O3. It is one of several oxides of rare earth elements with a high melting point. It is used in the preparation of other scandium compounds as well as in high ...
was isolated in late 1879 by
Lars Fredrick Nilson;
Per Teodor Cleve
Per Teodor Cleve (10 February 1840 – 18 June 1905) was a Swedish chemist, biologist, mineralogist and oceanographer. He is best known for his discovery of the chemical elements holmium and thulium.
Born in Stockholm in 1840, Cleve earned ...
recognized the correspondence and notified Mendeleev late in that year. Mendeleev had predicted an
atomic mass
Atomic mass ( or ) is the mass of a single atom. The atomic mass mostly comes from the combined mass of the protons and neutrons in the nucleus, with minor contributions from the electrons and nuclear binding energy. The atomic mass of atoms, ...
of 44 for
eka-boron in 1871, while scandium has an atomic mass of 44.955907.
In 1871, Mendeleev predicted
the existence of a yet-undiscovered element he named eka-aluminium (because of its proximity to
aluminium
Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
in the
periodic table
The periodic table, also known as the periodic table of the elements, is an ordered arrangement of the chemical elements into rows (" periods") and columns (" groups"). It is an icon of chemistry and is widely used in physics and other s ...
). The table below compares the qualities of the element predicted by Mendeleev with actual characteristics of gallium, which was discovered, soon after Mendeleev predicted its existence, in 1875 by
Paul Emile Lecoq de Boisbaudran.
Technetium
Technetium is a chemical element; it has Symbol (chemistry), symbol Tc and atomic number 43. It is the lightest element whose isotopes are all radioactive. Technetium and promethium are the only radioactive elements whose neighbours in the sense ...
was isolated by
Carlo Perrier and
Emilio Segrè in 1937, well after Mendeleev's lifetime, from samples of
molybdenum
Molybdenum is a chemical element; it has Symbol (chemistry), symbol Mo (from Neo-Latin ''molybdaenum'') and atomic number 42. The name derived from Ancient Greek ', meaning lead, since its ores were confused with lead ores. Molybdenum minerals hav ...
that had been bombarded with
deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
nuclei in a
cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Januar ...
by
Ernest Lawrence. Mendeleev had predicted an atomic mass of 100 for eka-manganese in 1871, and the most stable isotopes of technetium are
97Tc and
98Tc.
Germanium was isolated in 1886 and provided the best confirmation of the theory up to that time, due to its contrasting more clearly with its neighboring elements than the two previously confirmed predictions of Mendeleev do with theirs.
Other predictions
The existence of an element between
thorium
Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
(90) and
uranium
Uranium is a chemical element; it has chemical symbol, symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Ura ...
(92) was predicted by Mendeleev in 1871. In 1900,
William Crookes
Sir William Crookes (; 17 June 1832 – 4 April 1919) was an English chemist and physicist who attended the Royal College of Chemistry, now part of Imperial College London, and worked on spectroscopy. He was a pioneer of vacuum tubes, inventing ...
isolated a radioactive material deriving from uranium that he could not identify, which was later proven to be mixture of
234Th and
234mPa. Protactinium-234m (named "brevium") was identified in Germany in 1913, but the name ''
protactinium'' was not given until 1918, when protactinium-231 was discovered. Since the acceptance of
Glenn T. Seaborg's
actinide concept in 1945, thorium, uranium and protactinium have been classified as
actinide
The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
s; hence, protactinium does not occupy the place of eka-
tantalum
Tantalum is a chemical element; it has Symbol (chemistry), symbol Ta and atomic number 73. It is named after Tantalus, a figure in Greek mythology. Tantalum is a very hard, ductility, ductile, lustre (mineralogy), lustrous, blue-gray transition ...
(under 73) in
group 5 Group 5 may refer to:
* Group 5 element, chemical element classification
* Group 5 (motorsport), FIA classification for cars in auto racing See also
* G5 (disambiguation)
{{Disambig ...
. Eka-tantalum is actually the
synthetic superheavy element
Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, or superheavies for short, are the chemical elements with atomic number greater than 104. The superheavy elements are those beyond the actinides in ...
dubnium (105).
Mendeleev's 1869 table had implicitly predicted a heavier analog of
titanium
Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
(22) and
zirconium (40), but in 1871 he placed
lanthanum (57) in that spot. The 1923 discovery of
hafnium
Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dm ...
(72) validated Mendeleev's original 1869 prediction.
Some other predictions were unsuccessful because he failed to recognise the presence of the lanthanides in the sixth row.
[
In 1902, Bohuslav Brauner placed lanthanides in a special series instead of Mendeleev's extra period, so he renamed Mendeleev's tri-manganese as dvi-manganese and dvi-tellurium as eka-tellurium (polonium had already been discovered, but its chemical properties had not yet been studied). Dvi-caesium was renamed eka-caesium.
]
Later predictions
In 1902, having accepted the evidence for elements helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
and argon
Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
, Mendeleev placed these noble gases in Group 0 in his arrangement of the elements. As Mendeleev was doubtful of atomic theory
Atomic theory is the scientific theory that matter is composed of particles called atoms. The definition of the word "atom" has changed over the years in response to scientific discoveries. Initially, it referred to a hypothetical concept of ...
to explain the law of definite proportions
In chemistry, the law of definite proportions, sometimes called Proust's law or the law of constant composition, states that a given
chemical compound contains its constituent elements in a fixed ratio (by mass) and does not depend on its source ...
, he had no ''a priori
('from the earlier') and ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, Justification (epistemology), justification, or argument by their reliance on experience. knowledge is independent from any ...
'' reason to believe hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
was the lightest of elements, and suggested that a hypothetical lighter member of these chemically inert Group 0 elements could have gone undetected and be responsible for radioactivity
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. Currently some periodic tables of elements put lone neutron
The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
s in this place (see neutronium
Neutronium (or neutrium, neutrite, or element zero) is a hypothetical substance made purely of neutrons. The word was coined by scientist Andreas von Antropoff in 1926 (before the 1932 discovery of the neutron) for the hypothetical "element of ...
) but no such element has ever been detected.
The heavier of the hypothetical proto-helium elements Mendeleev identified with coronium, named by association with an unexplained spectral line in the Sun's corona. A faulty calibration gave a wavelength of 531.68 nm, which was eventually corrected to 530.3 nm, which Grotrian and Edlén identified as originating from Fe XIV (i.e. Fe13+) in 1939.
The lightest of the Group 0 gases, the first in the periodic table, was assigned a theoretical atomic mass between and . The kinetic velocity of this gas was calculated by Mendeleev to be 2,500,000 meters per second. Nearly massless, these gases were assumed by Mendeleev to permeate all matter, rarely interacting chemically. The high mobility and very small mass of the trans-hydrogen gases would result in the situation that they could be rarefied, yet appear to be very dense.
Mendeleev later published a theoretical expression of the ether in a small booklet entitled ''A Chemical Conception of the Ether'' (1904). His 1904 publication again contained two atomic elements smaller and lighter than hydrogen. He treated the "ether gas" as an interstellar atmosphere composed of at least two elements lighter than hydrogen. He stated that these gases originated due to violent bombardments internal to stars, the Sun being the most prolific source of such gases. According to Mendeleev's booklet, the interstellar atmosphere was probably composed of several additional elemental species.
Notes
References
Further reading
*
{{Navbox periodic table
*