Matsubara Frequency
   HOME

TheInfoList



OR:

In
thermal quantum field theory In theoretical physics, thermal quantum field theory (thermal field theory for short) or finite temperature field theory is a set of methods to calculate expectation values of physical observables of a quantum field theory at finite temperature. I ...
, the Matsubara frequency summation (named after
Takeo Matsubara was a Japanese physicist. Matsubara proposed a method of statistical mechanics related to Green's function (many-body theory), by applying quantum field theory techniques to statistical physics. This method, commonly known as Matsubara Green's ...
) is a technique used to simplify calculations involving Euclidean (imaginary time) path integrals. In thermal quantum field theory, bosonic and fermionic quantum fields \phi(\tau) are respectively periodic or antiperiodic in imaginary time \tau, with periodicity \beta = \hbar / k_ T. Matsubara summation refers to the technique of expanding these fields in Fourier series \phi(\tau) = \frac\sum_ e^\phi(i\omega_n) \iff \phi(i\omega_n) = \frac \int_0^\beta d\tau\ e^\phi(\tau). The frequencies \omega_n are called the Matsubara frequencies, taking values from either of the following sets (with n\in\mathbb): *bosonic frequencies: \omega_n=\frac, *fermionic frequencies: \omega_n=\frac, which respectively enforce periodic and antiperiodic boundary conditions on the field \phi(\tau). Once such substitutions have been made, certain diagrams contributing to the action take the form of a so-called Matsubara summation S_\eta = \frac\sum_ g(i\omega_n). The summation will converge if g(z=i\omega) tends to 0 in z\to\infty limit in a manner faster than z^. The summation over bosonic frequencies is denoted as S_ (with \eta=+1), while that over fermionic frequencies is denoted as S_ (with \eta=-1). \eta is the statistical sign. In addition to thermal quantum field theory, the Matsubara frequency summation method also plays an essential role in the diagrammatic approach to solid-state physics, namely, if one considers the diagrams at finite temperature. Generally speaking, if at T=0\,\text, a certain
Feynman diagram In theoretical physics, a Feynman diagram is a pictorial representation of the mathematical expressions describing the behavior and interaction of subatomic particles. The scheme is named after American physicist Richard Feynman, who introduced ...
is represented by an integral \int_ \mathrm\omega \ g(\omega ), at finite temperature it is given by the sum S_\eta.


Summation formalism


General formalism

The trick to evaluate Matsubara frequency summation is to use a Matsubara weighting function ''h''''η''(''z'') that has simple
poles Pole or poles may refer to: People *Poles (people), another term for Polish people, from the country of Poland * Pole (surname), including a list of people with the name * Pole (musician) (Stefan Betke, born 1967), German electronic music artist ...
located exactly at z=i\omega_n. The weighting functions in the boson case ''η'' = +1 and fermion case ''η'' = −1 differ. The choice of weighting function will be discussed later. With the weighting function, the summation can be replaced by a contour integral surrounding the imaginary axis. S_\eta=\frac\sum_ g(i\omega)=\frac\oint g(z) h_\eta(z) \,dz, As in Fig. 1, the weighting function generates poles (red crosses) on the imaginary axis. The contour integral picks up the residue of these poles, which is equivalent to the summation. This procedure is sometimes called Sommerfeld-Watson transformation.
Summation of series: Sommerfeld-Watson transformation, Lecture notes
', M. G. Rozman
By deformation of the contour lines to enclose the poles of ''g''(''z'') (the green cross in Fig. 2), the summation can be formally accomplished by summing the residue of ''g''(''z'')''h''''η''(''z'') over all poles of ''g''(''z''), S_\eta=-\frac 1 \beta \sum_ \operatorname g(z_0) h_\eta(z_0). Note that a minus sign is produced, because the contour is deformed to enclose the poles in the clockwise direction, resulting in the negative residue.


Choice of Matsubara weighting function

To produce simple poles on boson frequencies z=i\omega_n, either of the following two types of Matsubara weighting functions can be chosen h_^(z)=\frac=-\beta n_(-z)=\beta(1+n_(z)), h_^(z)=\frac=\beta n_(z), depending on which half plane the convergence is to be controlled in. h_^(z) controls the convergence in the left half plane (Re ''z'' < 0), while h_^(z) controls the convergence in the right half plane (Re ''z'' > 0). Here n_(z)=(e^-1)^ is the Bose–Einstein distribution function. The case is similar for fermion frequencies. There are also two types of Matsubara weighting functions that produce simple poles at z=i\omega_m h_^(z)=\frac=\beta n_(-z)=\beta(1-n_(z)), h_^(z)=\frac=-\beta n_(z). h_^(z) controls the convergence in the left half plane (Re ''z'' < 0), while h_^(z) controls the convergence in the right half plane (Re ''z'' > 0). Here n_ (z)=(e^+1)^ is the
Fermi–Dirac Fermi–Dirac may refer to: * Fermi–Dirac statistics or Fermi–Dirac distribution * Fermi–Dirac integral (disambiguation) ** Complete Fermi–Dirac integral ** Incomplete Fermi–Dirac integral See also * Fermi (disambiguation) * Dirac (di ...
distribution function. In the application to Green's function calculation, ''g''(''z'') always have the structure g(z)=G(z)e^, which diverges in the left half plane given 0 < ''τ'' < ''β''. So as to control the convergence, the weighting function of the first type is always chosen h_\eta(z)=h_\eta^(z). However, there is no need to control the convergence if the Matsubara summation does not diverge. In that case, any choice of the Matsubara weighting function will lead to identical results.


Table of Matsubara frequency summations

The following table contains S_\eta=\frac\sum_g(i\omega) for some simple
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
s ''g''(''z''). The symbol ''η'' = ±1 is the statistical sign, +1 for bosons and −1 for fermions.


Applications in physics


Zero temperature limit

In this limit \beta\rightarrow\infty, the Matsubara frequency summation is equivalent to the integration of imaginary frequency over imaginary axis. \frac\sum_=\int_^\frac. Some of the integrals do not converge. They should be regularized by introducing the frequency cutoff \Omega, and then subtracting the divergent part (\Omega-dependent) from the integral before taking the limit of \Omega\rightarrow\infty. For example, the free energy is obtained by the integral of logarithm, \eta \lim_\left \int_^\frac \left(\ln(-i\omega+\xi)-\frac\right)-\frac(\ln\Omega-1)\right=\left\{ \begin{array}{cc} 0 & \xi\geq0, \\ -\eta\xi & \xi<0, \end{array} \right. meaning that at zero temperature, the free energy simply relates to the internal energy below the chemical potential. Also the distribution function is obtained by the following integral \eta \lim_{\Omega\rightarrow\infty} \int_{-i\Omega}^{i\Omega}\frac{\mathrm{d}(i\omega)}{2\pi i} \left(\frac{1}{-i\omega+\xi}-\frac{\pi}{2\Omega}\right) =\left\{ \begin{array}{cc} 0 & \xi\geq0, \\ -\eta & \xi<0, \end{array} \right. which shows step function behavior at zero temperature.


Green's function related


Time domain

Consider a function ''G''(''τ'') defined on the imaginary time interval (0,''β''). It can be given in terms of Fourier series, G(\tau)=\frac{1}{\beta}\sum_{i\omega} G(i\omega) e^{-i\omega\tau}, where the frequency only takes discrete values spaced by 2{{pi/''β''. The particular choice of frequency depends on the boundary condition of the function ''G''(''τ''). In physics, ''G''(''τ'') stands for the imaginary time representation of Green's function G(\tau)=-\langle \mathcal{T}_\tau \psi(\tau)\psi^*(0) \rangle. It satisfies the periodic boundary condition ''G''(''τ''+''β'')=''G''(''τ'') for a boson field. While for a fermion field the boundary condition is anti-periodic ''G''(''τ'' + ''β'') = −''G''(''τ''). Given the Green's function ''G''(''iω'') in the frequency domain, its imaginary time representation ''G''(''τ'') can be evaluated by Matsubara frequency summation. Depending on the boson or fermion frequencies that is to be summed over, the resulting ''G''(''τ'') can be different. To distinguish, define G_\eta(\tau)= \begin{cases} G_{\rm B}(\tau), & \text{if } \eta = +1, \\ G_{\rm F}(\tau), & \text{if } \eta = -1, \end{cases} with G_{\rm B}(\tau)=\frac{1}{\beta}\sum_{i\omega_n}G(i\omega_n)e^{-i\omega_n\tau}, G_{\rm F}(\tau)=\frac{1}{\beta}\sum_{i\omega_m}G(i\omega_m)e^{-i\omega_m\tau}. Note that ''τ'' is restricted in the principal interval (0,''β''). The boundary condition can be used to extend ''G''(''τ'') out of the principal interval. Some frequently used results are concluded in the following table. {, class="wikitable" , - !G(i\omega) !G_\eta(\tau) , - , (i\omega-\xi)^{-1} , -e^{\xi(\beta-\tau)}n_\eta(\xi) , - , (i\omega-\xi)^{-2} , e^{\xi(\beta-\tau)}n_\eta(\xi)\left(\tau+\eta\beta n_\eta(\xi)\right) , - , (i\omega-\xi)^{-3} , -\frac{1}{2}e^{\xi(\beta-\tau)}n_\eta(\xi) \left(\tau^2+\eta\beta(\beta+2\tau) n_\eta(\xi)+2\beta^2n^2_\eta(\xi)\right) , - , (i\omega-\xi_1)^{-1}(i\omega-\xi_2)^{-1} , -\frac{e^{\xi_1(\beta-\tau)}n_\eta(\xi_1)-e^{\xi_2(\beta-\tau)}n_\eta(\xi_2)}{\xi_1-\xi_2} , - , (\omega^2+m^2)^{-1} , \frac{e^{-m\tau{2m}+\frac{\eta}{m}\cosh{m\tau}\;n_\eta(m) , - , i\omega(\omega^2+m^2)^{-1} , \frac{e^{-m\tau{2}-\eta\,\sinh{m\tau}\;n_\eta(m) , -


Operator switching effect

The small imaginary time plays a critical role here. The order of the operators will change if the small imaginary time changes sign. \langle \psi\psi^*\rangle=\langle \mathcal{T}_\tau \psi(\tau=0^+) \psi^*(0)\rangle =-G_\eta(\tau=0^+)=-\frac{1}{\beta}\sum_{i\omega}G(i\omega)e^{-i\omega 0^+} \langle \psi^*\psi\rangle=\eta\langle \mathcal{T}_\tau \psi(\tau=0^-) \psi^*(0)\rangle =-\eta G_\eta(\tau=0^-)=-\frac{\eta}{\beta}\sum_{i\omega}G(i\omega)e^{i\omega 0^+}


Distribution function

The evaluation of distribution function becomes tricky because of the discontinuity of Green's function ''G''(''τ'') at ''τ'' = 0. To evaluate the summation G(0) = \sum_{i\omega}(i\omega-\xi)^{-1}, both choices of the weighting function are acceptable, but the results are different. This can be understood if we push ''G''(''τ'') away from ''τ'' = 0 a little bit, then to control the convergence, we must take h_\eta^{(1)}(z) as the weighting function for G(\tau=0^+), and h_\eta^{(2)}(z) for G(\tau=0^-). Bosons G_{\rm B}(\tau=0^-)=\frac{1}{\beta}\sum_{i\omega_n}\frac{e^{i\omega_n 0^+{i\omega_n-\xi}=-n_{\rm B}(\xi), G_{\rm B}(\tau=0^+)=\frac{1}{\beta}\sum_{i\omega_n}\frac{e^{-i\omega_n 0^+{i\omega_n-\xi}=-(n_{\rm B}(\xi)+1). Fermions G_{\rm F}(\tau=0^-)=\frac{1}{\beta}\sum_{i\omega_m}\frac{e^{i\omega_m 0^+{i\omega_m-\xi}=n_{\rm F}(\xi), G_{\rm F}(\tau=0^+)=\frac{1}{\beta}\sum_{i\omega_m}\frac{e^{-i\omega_m 0^+{i\omega_m-\xi}=n_{\rm F}(\xi)-1.


Free energy

Bosons \frac{1}{\beta}\sum_{i\omega_n} \ln(\beta(-i\omega_n+\xi))=\frac{1}{\beta}\ln(1-e^{-\beta\xi}), Fermions -\frac{1}{\beta}\sum_{i\omega_m} \ln(\beta(-i\omega_m+\xi))=-\frac{1}{\beta}\ln(1+e^{-\beta\xi}).


Diagram evaluations

Frequently encountered diagrams are evaluated here with the single mode setting. Multiple mode problems can be approached by a spectral function integral. Here \omega_m is a fermionic Matsubara frequency, while \omega_n is a bosonic Matsubara frequency.


Fermion self energy

\Sigma(i\omega_m)=-\frac{1}{\beta }\sum _{i \omega_n } \frac{1}{i \omega_m +i \omega_n -\varepsilon }\frac{1}{i \omega_n -\Omega }=\frac{n_{\rm F}(\varepsilon )+n_{\rm B}(\Omega )}{i \omega_m -\varepsilon +\Omega }.


Particle-hole bubble

\Pi (i \omega_n )=\frac{1}{\beta }\sum _{i \omega_m } \frac{1}{i \omega_m +i \omega_n -\varepsilon }\frac{1}{i \omega_m -\varepsilon '}=-\frac{n_{\rm F}(\varepsilon )-n_{\rm F} \left(\varepsilon '\right)}{i \omega_n -\varepsilon +\varepsilon'}.


Particle-particle bubble

\Pi (i \omega_n )=-\frac{1}{\beta }\sum _{i \omega_m } \frac{1}{i \omega_m +i \omega_n -\varepsilon }\frac{1}{-i \omega_m -\varepsilon '}=\frac{1-n_{\rm F}\left(\varepsilon '\right) - n_{\rm F}(\varepsilon )}{i \omega_n -\varepsilon -\varepsilon '}.


Appendix: Properties of distribution functions


Distribution functions

The general notation n_\eta stands for either Bose (''η'' = +1) or Fermi (''η'' = −1) distribution function n_\eta(\xi)=\frac{1}{e^{\beta\xi}-\eta}. If necessary, the specific notations ''n''B and ''n''F are used to indicate Bose and Fermi distribution functions respectively n_\eta(\xi)= \begin{cases} n_{\rm B}(\xi), & \text{if } \eta = +1, \\ n_{\rm F}(\xi), & \text{if } \eta = -1. \end{cases}


Relation to hyperbolic functions

The Bose distribution function is related to hyperbolic cotangent function by n_{\rm B}(\xi)=\frac{1}{2}\left(\operatorname{coth}\frac{\beta\xi}{2}-1\right). The Fermi distribution function is related to hyperbolic tangent function by n_{\rm F}(\xi)=\frac{1}{2}\left(1-\operatorname{tanh}\frac{\beta\xi}{2}\right).


Parity

Both distribution functions do not have definite parity, n_\eta(-\xi)=-\eta-n_\eta(\xi). Another formula is in terms of the c_\eta function n_\eta(-\xi)=n_\eta(\xi)+2\xi c_\eta(0,\xi). However their derivatives have definite parity.


Bose–Fermi transmutation

Bose and Fermi distribution functions transmute under a shift of the variable by the fermionic frequency, n_\eta(i\omega_m+\xi)=-n_{-\eta}(\xi). However shifting by bosonic frequencies does not make any difference.


Derivatives


First order

n_{\rm B}^\prime(\xi)=-\frac{\beta}{4}\mathrm{csch}^2\frac{\beta \xi}{2}, n_{\rm F}^\prime(\xi)=-\frac{\beta}{4}\mathrm{sech}^2\frac{\beta \xi}{2}. In terms of product: n_\eta^\prime(\xi)= -\beta n_\eta(\xi)(1+\eta n_\eta(\xi)). In the zero temperature limit: n_\eta^\prime(\xi)=\eta\delta(\xi) \text{ as } \beta\rightarrow\infty.


Second order

n_{\rm B}^{\prime\prime}(\xi)=\frac{\beta^2}{4}\operatorname{csch}^2\frac{\beta \xi}{2}\operatorname{coth}\frac{\beta \xi}{2}, n_{\rm F}^{\prime\prime}(\xi)=\frac{\beta^2}{4}\operatorname{sech}^2\frac{\beta \xi}{2}\operatorname{tanh}\frac{\beta \xi}{2}.


Formula of difference

n_\eta(a+b)-n_\eta(a-b)=-\frac{\mathrm{sinh}\beta b}{\mathrm{cosh}\beta a-\eta\,\mathrm{cosh}\beta b}.


Case ''a'' = 0

n_{\rm B}(b)-n_{\rm B}(-b)=\mathrm{coth}\frac{\beta b}{2}, n_{\rm F}(b)-n_{\rm F}(-b)=-\mathrm{tanh}\frac{\beta b}{2}.


Case ''a'' → 0

n_{\rm B}(a+b)-n_{\rm B}(a-b)=\operatorname{coth}\frac{\beta b}{2}+n_{\rm B}^{\prime\prime}(b)a^2+\cdots, n_{\rm F}(a+b)-n_{\rm F}(a-b)=-\operatorname{tanh}\frac{\beta b}{2}+n_{\rm F}^{\prime\prime}(b)a^2+\cdots.


Case ''b'' → 0

n_{\rm B}(a+b)-n_{\rm B}(a-b)=2n_{\rm B}^\prime(a)b+\cdots, n_{\rm F}(a+b)-n_{\rm F}(a-b)=2n_{\rm F}^\prime(a)b+\cdots.


The function ''c''''η''

Definition: c_\eta(a,b)\equiv-\frac{n_\eta(a+b)-n_\eta(a-b)}{2b}. For Bose and Fermi type: c_{\rm B}(a,b)\equiv c_+(a,b), c_{\rm F}(a,b)\equiv c_-(a,b).


Relation to hyperbolic functions

c_\eta(a,b)=\frac{\sinh\beta b}{2b(\cosh\beta a-\eta\cosh\beta b)}. It is obvious that c_{\rm F}(a,b) is positive definite. To avoid overflow in the numerical calculation, the tanh and coth functions are used c_{\rm B}(a,b)=\frac{1}{4b}\left(\operatorname{coth}\frac{\beta(a-b)}{2} - \operatorname{coth}\frac{\beta(a+b)}{2}\right), c_{\rm F}(a,b)=\frac{1}{4b}\left(\operatorname{tanh}\frac{\beta(a+b)}{2} - \operatorname{tanh}\frac{\beta(a-b)}{2}\right).


Case ''a'' = 0

c_{\rm B}(0,b)=-\frac{1}{2b}\operatorname{coth}\frac{\beta b}{2}, c_{\rm F}(0,b)=\frac{1}{2b}\operatorname{tanh}\frac{\beta b}{2}.


Case ''b'' = 0

c_{\rm B}(a,0)=\frac{\beta}{4}\operatorname{csch}^2\frac{\beta a}{2}, c_{\rm F}(a,0)=\frac{\beta}{4}\operatorname{sech}^2\frac{\beta a}{2}.


Low temperature limit

For ''a'' = 0: c_{\rm F}(0,b)=\frac{1}{2, b. For ''b'' = 0: c_{\rm F}(a,0)=\delta(a). In general, c_{\rm F}(a,b)=\begin{cases} \frac{1}{2, b, & \text{if } , a, <, b, \\ 0, & \text{if } , a, >, b, \end{cases}


See also

*
Imaginary time Imaginary time is a mathematical representation of time that appears in some approaches to special relativity and quantum mechanics. It finds uses in certain cosmological theories. Mathematically, imaginary time is real time which has undergone a ...
*
Thermal quantum field theory In theoretical physics, thermal quantum field theory (thermal field theory for short) or finite temperature field theory is a set of methods to calculate expectation values of physical observables of a quantum field theory at finite temperature. I ...


External links


Agustin Nieto: ''Evaluating Sums over the Matsubara Frequencies''. arXiv:hep-ph/9311210Github repository: MatsubaraSum
A Mathematica package for Matsubara frequency summation.
A. Taheridehkordi, S. Curnoe, J.P.F. LeBlanc: ''Algorithmic Matsubara Integration for Hubbard-like models.''. arXiv:cond-mat/1808.05188


References

Quantum field theory