In
linear algebra
Linear algebra is the branch of mathematics concerning linear equations such as:
:a_1x_1+\cdots +a_nx_n=b,
linear maps such as:
:(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n,
and their representations in vector spaces and through matric ...
, two ''n''-by-''n''
matrices
Matrix most commonly refers to:
* ''The Matrix'' (franchise), an American media franchise
** ''The Matrix'', a 1999 science-fiction action film
** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
''A'' and ''B'' are called consimilar if
:
for some invertible
matrix
, where
denotes the elementwise
complex conjugation
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a ...
. So for real matrices similar by some real matrix
, consimilarity is the same as
matrix similarity
In linear algebra, two ''n''-by-''n'' matrices and are called similar if there exists an invertible ''n''-by-''n'' matrix such that
B = P^ A P .
Similar matrices represent the same linear map under two (possibly) different bases, with bei ...
.
Like ordinary similarity, consimilarity is an
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relatio ...
on the set of
matrices, and it is reasonable to ask what properties it preserves.
The theory of ordinary similarity arises as a result of studying
linear transformation
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
s referred to different bases. Consimilarity arises as a result of studying
antilinear transformations referred to different bases.
A matrix is consimilar to itself, its complex conjugate, its
transpose
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal;
that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations).
The tr ...
and its
adjoint matrix
In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an m \times n complex matrix \boldsymbol is an n \times m matrix obtained by transposing \boldsymbol and applying complex conjugate on each entry (the complex ...
. Every matrix is consimilar to a real matrix and to a
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -t ...
. There is a standard form for the consimilarity class, analogous to the
Jordan normal form
In linear algebra, a Jordan normal form, also known as a Jordan canonical form (JCF),
is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to ...
.
References
*
* {{cite book , zbl=0576.15001 , last1=Horn , first1=Roger A. , last2=Johnson , first2=Charles R. , title=Matrix analysis , location=Cambridge , publisher=
Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer.
Cambr ...
, year=1985 , isbn=0-521-38632-2 (sections 4.5 and 4.6 discuss consimilarity)
Matrices