HOME

TheInfoList



OR:

Mark D. Maughmer (born January 18, 1950) is a professor of
Aerospace Engineering Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is s ...
in the Department of Aerospace Engineering at The Pennsylvania State University. He is a widely published author known throughout the world as one of the leading aerodynamicists, especially in the areas of airfoil and winglet design and analysis,
wing A wing is a type of fin that produces both Lift (force), lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform (aeronautics), planform. Wing efficiency is expressed as lift-to-d ...
optimization, natural laminar flow aerodynamics, and subsonic, low
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to laminar flow, which occurs when a fluid flows in parallel layers with no disruption between ...
wind-tunnel design and operation.


Winglets

In 1987, Peter Masak called on Maughmer about designing winglets for his sailplane to improve performance. Others had attempted to apply Richard T. Whitcomb's NASA winglets to gliders, and though they did improve climb performance, this did not offset the parasite drag penalty in high speed cruise. Masak was convinced it was possible to overcome this hurdle, and Maughmer was willing to join his quest. By trial and error, they ultimately developed successful winglet designs for gliding competitions, and at the 1991
World Gliding Championships The World Gliding Championships (WGC) is a gliding competitions, gliding competition held roughly every two years by the FAI Gliding Commission. The dates are not always exactly two years apart, often because the contests are always held in the sum ...
in Uvalde, Texas, the trophy for the highest speed went to a winglet equipped 15-meter class limited wingspan glider, exceeding the highest speed in the unlimited span Open Class, an exceptional result. The winglets were originally retrofit to production sailplanes, but now most high-performance gliders are equipped from the factory with winglets, or some other wingtip device. Maughmer has consulted with German sailplane designers on winglets, non-planar wing tips, and other aerodynamic improvements incorporated in several production sailplanes.


Education and academics

He received his Ph.D. (Aeronautical and Astronautical Engineering) from the
University of Illinois The University of Illinois Urbana-Champaign (UIUC, U of I, Illinois, or University of Illinois) is a public university, public land-grant university, land-grant research university in the Champaign–Urbana metropolitan area, Illinois, United ...
in 1983, M.S. from
Princeton University Princeton University is a private university, private Ivy League research university in Princeton, New Jersey, United States. Founded in 1746 in Elizabeth, New Jersey, Elizabeth as the College of New Jersey, Princeton is the List of Colonial ...
in 1975 and B.S. from the
University of Illinois The University of Illinois Urbana-Champaign (UIUC, U of I, Illinois, or University of Illinois) is a public university, public land-grant university, land-grant research university in the Champaign–Urbana metropolitan area, Illinois, United ...
in 1972. Maughmer received the PSES Outstanding Teaching Award in 1993, the PSES Premier Teaching Award in 2001, and the Alumni Faculty Teaching Fellow Award in 2012. In 2009, Maughmer received the ASEE Fred Merryfield Design Award, a national award for teaching excellence in engineering design. He is active in the AIAA and has served on the Aircraft Design Technical Committee (1987–90). He received the AIAA/ASEE John Leland Atwood Award in 2013, and the AIAA William T. Piper Award in 2014. For the Soaring Society of America, he is chair of configuration and design for the Technical Board, serves on the board of directors for the Collegiate Soaring Association, and received the society's Exceptional Service Award in 1991. He has served on the Board of the International Organization for the Science and Technology of Soaring (OSTIV), and is currently the vice-president of that organization. He is also a glider pilot and a flight instructor with the Penn State Soaring Club.


Selected publications

Source: * Kody, F., Corle, E., Maughmer, M., and S. Schmitz. 2016. Higher-Harmonic Deployment of Trailing-Edge Flaps for Rotor-Performance Enhancement and Vibration Reduction. Journal of Aircraft Vol. 53(2) pp. 333–342. * Coder, J. G. and M. D. Maughmer. 2014. CFD Compatible Transition Modeling Using an Amplification Factor Transport Equation. AIAA Journal Vol. 52(11) pp. 2506–2512. * Coder, J.G., Maughmer, M.D., and D. M. Somers, D.M. 2014. Theoretical and Experimental Results for the S414, Slotted, Natural-Laminar-Flow Airfoil. Journal of Aircraft Vol. 51(6) pp. 1883–1890. * Cole, J.A., Vieira, B.A.O., Coder, J.G., Premi, A., and M.D. Maughmer. 2013. An Experimental Investigation into the Effects of Gurney Flaps on Various Airfoils. Journal of Aircraft Vol. 50(4) pp. 1287–1294. * Bramesfeld, G. and M. D. Maughmer. 2008. A Free-Wake, Lifting-Surface Model Using Distributed Vorticity Elements. Journal of Aircraft Vol. 45(2) pp. 560–568. * Maughmer, M., Lesieutre, G., and M.P. Kinzel. 2007. Miniature Trailing-Edge Effectors for Rotorcraft Performance Enhancement. Journal of the American Helicopter Society Vol. 52(2) pp. 146–158. * Bramesfeld, G., Maughmer, M.D., and S. M. Willits. 2006. Piloting Strategies for Controlling a Transport Aircraft after Vertical-Tail Loss. Journal of Aircraft Vol. 43(1) pp. 216–225. * M.D. Maughmer. 2003. The Design of Winglets for High-Performance Sailplanes. Journal of Aircraft Vol. 40(6) pp. 1099–1106. * Maughmer, M.D., Swan, T.J., and S. M.Willits. 2002. The Design and Testing of a Winglet Airfoil for Low-Speed Aircraft. Journal of Aircraft Vol. 39(4) pp. 654–661. * Selig, M.S., Maughmer, M.D., and D. M. Somers. 1995. A Natural Laminar Flow Airfoil for General Aviation Applications. Journal of Aircraft Vol. 32(4) pp. 710–715. * Dini, P. and M. D. Maughmer. 1994. A Locally Interactive Laminar Separation Bubble Model. Journal of Aircraft Vol. 31(4) pp.  802–810. * Maughmer, M., L. Ozoroski, D. Straussfogel, and L. Long. 1993. Validation of Engineering Methods for Predicting Hypersonic Vehicle Controls Forces and Moments. Journal of Guidance, Control and Dynamics Vol. 16(4) pp. 762–769. * Selig, M. S., and M. D. Maughmer. 1992. Generalized Multi-Point Inverse Airfoil Design. AIAA Journal, Vol. 30(11) pp. 2618–2615. * Dini, P., M. S. Selig, and M. D. Maughmer. 1992. A Simplified Transition Prediction Method for Separated Boundary Layers. AIAA Journal Vol. 30(8) pp. 1953–1961. * Maughmer, M. D., and D. M. Somers. 1989. Design and Experimental Results for a High-Altitude, Long-Endurance Airfoil. Journal of Aircraft Vol. 26(2) pp. 148–153. * Ormsbee, A.I. and M. D. Maughmer. 1986. A Class of Airfoils Having Finite Trailing Edge Pressure Gradients. Journal of Aircraft Vol. 23(2) pp. 97–103. * Ormsbee, A.I., Bragg, M.B., Maughmer, M.D., and F.L. Jordan. 1981. Scaling Wake-Particle Interactions for Aerial Applications Research. Journal of Aircraft Vol. 18(7) pp. 592–596.


References


External links


Prof. Maughmer's page
at Penn State
About Winglets
paper by Mark D. Maughmer * paper by Mark D. Maughmer and Peter J. Kunz {{DEFAULTSORT:Maughmer, Mark D Aerodynamicists Pennsylvania State University faculty 1947 births Living people