
The magnetopause is the abrupt boundary between a
magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
and the surrounding
plasma. For
planetary science
Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of ...
, the magnetopause is the boundary between the planet's magnetic field and the
solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
. The location of the magnetopause is determined by the balance between the pressure of the dynamic planetary magnetic field and the dynamic pressure of the solar wind. As the solar wind pressure increases and decreases, the magnetopause moves inward and outward in response. Waves (ripples and flapping motion) along the magnetopause move in the direction of the solar wind flow in response to small-scale variations in the solar wind pressure and to
Kelvin–Helmholtz instabilities.
The solar wind is supersonic and passes through a
bow shock
In astrophysics, bow shocks are shock waves in regions where the conditions of density and pressure change dramatically due to blowing stellar wind. Bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby fl ...
where the direction of flow is changed so that most of the solar wind plasma is deflected to either side of the magnetopause, much like water is deflected before the bow of a ship. The zone of shocked solar wind plasma is the
magnetosheath. At Earth and all the other planets with intrinsic magnetic fields, some solar wind plasma succeeds in entering and becoming trapped within the magnetosphere. At Earth, the solar wind plasma which enters the magnetosphere forms the
plasma sheet
In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm3 versus 0.01-0.02 in the lobes) hot plasma and lower magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the m ...
. The amount of solar wind plasma and energy that enters the magnetosphere is regulated by the orientation of the
interplanetary magnetic field, which is embedded in the solar wind.
The Sun and other stars with magnetic fields and stellar winds have a solar magnetopause or
heliopause where the stellar environment is bounded by the interstellar environment.
Characteristics
Prior to the age of space exploration, interplanetary space was considered to be a vacuum. The coincidence of the first observation of a
solar flare
A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and ot ...
and the
geomagnetic storm of 1859 was evidence that plasma was ejected from the Sun during the flare event. Chapman and Ferraro proposed that a plasma was emitted by the Sun in a burst as part of a flare event which disturbed the planet's magnetic field in a manner known as a geomagnetic storm. The collision frequency of particles in the plasma in the interplanetary medium is very low and the electrical conductivity is so high that it could be approximated to an infinite conductor.
A magnetic field in a vacuum cannot penetrate a volume with infinite conductivity. Chapman and Bartels (1940)
illustrated this concept by postulating a plate with infinite conductivity placed on the dayside of a planet's dipole as shown in the schematic. The field lines on the dayside are bent. At low latitudes, the magnetic field lines are pushed inward. At high latitudes, the magnetic field lines are pushed backwards and over the polar regions. The boundary between the region dominated by the planet's magnetic field (i.e., the
magnetosphere
In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
) and the plasma in the interplanetary medium is the magnetopause. The configuration equivalent to a flat, infinitely conductive plate is achieved by placing an image dipole (green arrow at left of schematic) at twice the distance from the planet's dipole to the magnetopause along the planet-Sun line. Since the solar wind is continuously flowing outward, the magnetopause above, below and to the sides of the planet are swept backward into the geomagnetic tail as shown in the artist's concept. The region (shown in pink in the schematic) which separates field lines from the planet which are pushed inward from those which are pushed backward over the poles is an area of weak magnetic field or day-side cusp. Solar wind particles can enter the planet's magnetosphere through the cusp region. Because the solar wind exists at all times and not just times of solar flares, the magnetopause is a permanent feature of the space near any planet with a magnetic field.
The magnetic field lines of the planet's magnetic field are not stationary. They are continuously joining or merging with magnetic field lines of the interplanetary magnetic field in a process called
magnetic reconnection
Magnetic reconnection is a physical process occurring in electrically conducting Plasma (physics), plasmas, in which the magnetic topology is rearranged and magnetic energy is converted to kinetic energy, thermal energy, and particle accelerati ...
. The joined field lines are swept back over the poles into the planetary magnetic tail. In the tail, the field lines from the planet's magnetic field are re-joined and start moving toward night-side of the planet. The physics of this process was first explained by Dungey (1961). As such, the process is now referred to as the
Dungey Cycle.
If one assumed that magnetopause was just a boundary between a magnetic field in a vacuum and a plasma with a weak magnetic field embedded in it, then the magnetopause would be defined by electrons and ions penetrating one gyroradius into the magnetic field domain. Since the gyro-motion of electrons and ions is in opposite directions, an electric current flows along the boundary. The actual magnetopause is much more complex.
Estimating the standoff distance to the magnetopause
If the pressure from particles within the magnetosphere is neglected, it is possible to estimate the distance to the part of the magnetosphere that faces the
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. The condition governing this position is that the dynamic
ram pressure
Ram pressure is a pressure exerted on a body moving through a fluid medium, caused by relative bulk motion of the fluid rather than random thermal motion. It causes a drag (physics), drag force to be exerted on the body. Ram pressure is given in ...
from the
solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
is equal to the magnetic pressure from the Earth's
magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
:
[The reason for the factor of 4 is because the magnetic field strength just inside the magnetopause is twice the dipole value for a planar magnetopause]
where
and
are the
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
and
velocity
Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
of the
solar wind
The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
, and
is the
magnetic field strength
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicula ...
of the planet in
SI units ( in
T,
in
H/m).
Since the
dipole
In physics, a dipole () is an electromagnetic phenomenon which occurs in two ways:
* An electric dipole moment, electric dipole deals with the separation of the positive and negative electric charges found in any electromagnetic system. A simple ...
magnetic field strength varies with distance as
the magnetic field strength can be written as
, where
is the planet's magnetic moment, expressed in
.
Solving this equation for r leads to an estimate of the distance