Macroemulsions are dispersed liquid-liquid, thermodynamically unstable systems with particle sizes ranging from 1 to 100 μm (orders of magnitude), which, most often, do not form spontaneously. Macroemulsions scatter light effectively and therefore appear milky, because their droplets are greater than a wavelength of light.
They are part of a larger family of
emulsions
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
along with
miniemulsions (or nanoemulsions). As with all
emulsions
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
, one phase serves as the dispersing agent. It is often called the continuous or outer phase. The remaining phase(s) are disperse or inner phase(s), because the liquid droplets are finely distributed amongst the larger continuous phase droplets.
This type of
emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
is thermodynamically unstable, but can be stabilized for a period of time with applications of
kinetic energy
In physics, the kinetic energy of an object is the energy that it possesses due to its motion.
It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its a ...
.
Surfactants
Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, foaming a ...
(as the main
emulsifiers) are used to reduce the
interfacial tension between the two phases, and induce macroemulsion stability for a useful amount of time. Emulsions can be stabilized otherwise with polymers, solid particles (Pickering emulsions) or proteins.
Classification
Macroemulsions can be divided into two main categories based on if they are a single
emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
or a double or multiple
emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
group. Both categories will be described using a typical oil (O) and water (W)
immiscible
Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
fluid pairing. Single
emulsions
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
can be sub divided into two different types. For each single
emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
a single
surfactant
Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, fo ...
stabilizing layer exists as a
buffer in between the two layers. In (O/W) oil droplets are dispersed in water. On the other hand, (W/O) involves water droplets finely dispersed in oil. Double or multiple
emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
classification is similar to single emulsion classification, except the
immiscible
Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
phases are separated by at least two surfactant thin films. In a (W/O/W) combination, an
immiscible
Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
oil phase exists between two separate water phases. In contrast, in an (O/W/O) combination the
immiscible
Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
water phase separates two different oil phases.
Formation
Macroemulsions are formed in a variety of ways. Since they are not
thermodynamically stable, they do not form spontaneously and require energy input, usually in the form of stirring or shaking of some kind to mechanically mix the otherwise
immiscible
Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). The term is most often applied to liquids but also applies ...
phases. The resulting size of the macroemulsions typically depends on how much energy was used to mix the phases, with higher-energy mixing methods resulting in smaller emulsion particles. The energy required for this can be approximated using the following equation:
Where
is the energy Input,
is the interfacial tension between the two phases,
is the total volume of the mixture, and
is the average radius of the newly created emulsions
This equation gives the energy requirement just to separate the particles. In practice the energy cost is much higher, as most of the mechanical energy is simply converted to
heat
In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
rather than mixing the phases.
There are other ways to create emulsions between two liquids, such as adding one phase with droplets already being the required size.
An
emulsifying agent
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although ...
of some sort is also generally required. This helps form emulsions by reducing the
interfacial tension between the two phases, usually by acting as a
surfactant
Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, fo ...
and
adsorbing to the interface. This works because most emulsifiers have a
hydrophilic
A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press.
In contrast, hydrophobes are ...
and
hydrophobic
In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water.
Hydrophobic molecules tend to be nonpolar and, ...
side, which means they can bond with both the oil-like phase and the water-like phase, thus reducing the number of water-oil molecular interactions at the surface. Reducing the number of these interactions reduces the interfacial energy, thus causing the emulsions to become more stable. The concentration of
surfactant
Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, fo ...
needed is much higher than its
critical micelle concentration (CMC).
This forms a
surfactant
Surfactants are chemical compounds that decrease the surface tension between two liquids, between a gas and a liquid, or interfacial tension between a liquid and a solid. Surfactants may act as detergents, wetting agents, emulsifiers, fo ...
monolayer which orients itself to minimize its surface to volume ratio. This ratio yields highly polydisperse spherical droplets in the range of 1 to 100 μm.
The probability (P) of finding a certain sized droplet can be estimated for inner layer drops through the following equation:
where R is the radius of the droplet,
is the mean radius, and
is the standard deviation.
Determining which phase is the continuous phase and which phase is the dispersed phase is done by using the
Bancroft rule, Bancroft Rule when the two phases have similar mole fractions. This rule states that the phase which the emulsifier is the most
soluble
In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.
The extent of the solub ...
in will be the
continuous phase, even if it has a smaller
volume fraction overall. For example, a mixture that is 60% Water and 40% Oil can form an emulsion where the water is the dispersed phase and the oil is the continuous phase if the emulsifier is more soluble in the oil. This is because the continuous phase is the phase that can coalesce the fastest upon mixing, which means it is the phase that can
diffuse
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
the emulsifying agent away from its own interfaces and into the
bulk the fastest. It seems that this rule is very well followed in the case of surfactant-stabilized emulsions, but not for Pickering emulsions. For mixtures with overwhelmingly large amounts of one phase, the largest phase will often become the continuous phase. However, highly concentrated emulsions (looking like 'liquid-liquid foams') can also be obtained and stabilized.
Stability
Macroemulsions are, by definition, not thermodynamically stable. This means that from the moment they are created, they are always reverting to their original, immiscible and separate state. The reason why Macroemulsions can exist however, is because they are kinetically stable rather than thermodynamically stable. This means that, while they are continuously breaking down, it is done at such a slow pace that it is practically stable from a macroscopic perspective.
The reasons why macroemulsions are stable is similar to the reasons why
colloids can be stable. Based on
DLVO theory, repulsive forces from the charged surfaces of the two phases repel each other enough to offset the attractive forces of the
Hamaker Force Interactions. This creates a
potential energy well at some distance, where the particles are in a local area of stability despite not being directly touching and therefore coalescing. However, since this is an area of local rather than total low potential, if any set of particles can randomly have enough
thermal energy
The term "thermal energy" is used loosely in various contexts in physics and engineering. It can refer to several different well-defined physical concepts. These include the internal energy or enthalpy of a body of matter and radiation; heat, ...
they can coalesce into an even more stable state, which is why all macroemulsions gradually coalesce over time.
While it is energetically favorable for individual particles to coalesce due to the subsequent reduction of interfacial area, the adsorbed emulsifier prevents this. This is because it is more favorable for the emulsifying agent to be at an interface so reducing the interfacial area requires expending energy to return the emulsifying agent to the bulk.
Stability of the Macroemulsions are based on numerous environmental factors including
temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer.
Thermometers are calibrated in various temperature scales that historically have relied on ...
,
pH, and the
ionic strength
The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such ...
of the
solvent
A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
.
Progression of macroemulsions
Flocculation
Flocculation occurs when the dispersed drops group together throughout the continuous phase, but don't lose their individual identities. The driving force for flocculation is a weak
van der Waals attraction between drops at large distances, which is known as the secondary energy minimum.
An electrostatic repulsion between the surfaces prevents the drops from touching and merging, stabilizing the macroemulsion. The rate of diffusion limited encounters is equal to the upper limit for the decrease in droplet concentration and can be represented by the following equation:
where D can be found using the
Stokes-Einstein relation , R is the droplet radius, and c is the number of droplets per unit volume. This equation can be reduced to the following:
where
is the rate constant of flocculation
. If the droplet radii are not all the same size and aggregation occurs, the flocculation rate constant is equal to
.
Creaming
Creaming is the accumulation of drops in the dispersed phase at the top of the container.
This occurs as a result of
buoyancy force
Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the ...
s. The density of the dispersed and continuous phases, as well as the viscosity of the continuous phase, greatly affect the creaming process. If the dispersed phase liquid is less dense than the continuous phase liquid, creaming is more likely to occur. Also, there is a greater chance of creaming at lower viscosities of the continuous phase liquid. Once all of the dispersed drops are in close proximity to each other, it is easier for them to coalesce.
Coalescence
Coalescence is the merging of two dispersed drops into one. The surfaces of two drops must be in contact for coalescence to occur. This surface contact is dependent on both the
van der Waals attraction and surface repulsion forces between two drops.
Once in contact, the two surface films are able to fuse together, which is more likely to occur in areas where the surface film is weak. The liquid inside each drop is now in direct contact, and the two drops are able to merge into one.
Demulsification
Demulsification is the act of destabilizing an
emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible (unmixable or unblendable) owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Althou ...
. Once all of the drops have coalesced, two continuous phases exist instead of one dispersed phase and one continuous phase. This process may be accelerated by adding a cosurfactant or salt or by slowly stirring the liquid solution.
Demulsification is beneficial for several macroemulsion applications.
Applications
Macroemulsions have nearly endless uses in scientific, industrial, and household applications. They are widely utilized today in automotive, beauty, cleaning and fabric care products as well as biotechnology and manufacturing techniques.
Macroemulsions are often chosen over
microemulsions Microemulsions are clear, thermodynamically stable isotropic liquid mixtures of oil, water and surfactant, frequently in combination with a cosurfactant. The aqueous phase may contain salt(s) and/or other ingredients, and the "oil" may actually be a ...
for automotive and industrial applications because they are less expensive, easier to dispose of, and their tendency to demulsify more quickly is often desirable for lubricants. Soluble oil lubricants, usually containing fatty oil or mineral oil in water, are ideal for high speed and low pressure applications. They are often used for friction reducing needs and metalworking.
Many skin care products, sun screens, and fabric softeners are made from silicone macroemulsions. Silicone's is chosen because of its non-irritating and lubricating properties. Different combinations of macroemulsions and surfactants are the subject of a wide range of biological research, especially in the area of cell cultures.
The following table outlines a few examples of macroemulsions and their applications:
References
{{Reflist
Liquids