HOME

TheInfoList



OR:

Mixed oxide fuel (MOX fuel) is
nuclear fuel Nuclear fuel refers to any substance, typically fissile material, which is used by nuclear power stations or other atomic nucleus, nuclear devices to generate energy. Oxide fuel For fission reactors, the fuel (typically based on uranium) is ...
that contains more than one
oxide An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation st ...
of
fissile material In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal chain reaction can only be achieved with fissile material. The predominant neutron energy i ...
, usually consisting of
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
blended with
natural uranium Natural uranium (NU or Unat) is uranium with the same isotopic ratio as found in nature. It contains 0.711% uranium-235, 99.284% uranium-238, and a trace of uranium-234 by weight (0.0055%). Approximately 2.2% of its radioactivity comes from ura ...
, reprocessed uranium, or
depleted uranium Depleted uranium (DU), also referred to in the past as Q-metal, depletalloy, or D-38, is uranium with a lower content of the fissile isotope Uranium-235, 235U than natural uranium. The less radioactive and non-fissile Uranium-238, 238U is the m ...
. MOX fuel is an alternative to the low-enriched uranium fuel used in the
light-water reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron reacto ...
s that predominate
nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by ...
generation. For example, a mixture of 7% plutonium and 93% natural uranium reacts similarly, although not identically, to low-enriched uranium fuel (3 to 5% uranium-235). MOX usually consists of two phases, UO2 and PuO2, and/or a single phase solid solution (U,Pu)O2. The content of PuO2 may vary from 1.5 wt.% to 25–30 wt.% depending on the type of nuclear reactor. One attraction of MOX fuel is that it is a way of utilizing surplus
weapons-grade Weapons-grade nuclear material is any fissionable nuclear material that is pure enough to make a nuclear weapon and has properties that make it particularly suitable for nuclear weapons use. Plutonium and uranium in grades normally used in nuc ...
plutonium, an alternative to storage of surplus plutonium, which would need to be secured against the risk of theft for use in
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission or atomic bomb) or a combination of fission and fusion reactions (thermonuclear weapon), producing a nuclear exp ...
s. On the other hand, some studies warned that normalizing the global commercial use of MOX fuel and the associated expansion of
nuclear reprocessing Nuclear reprocessing is the chemical separation of fission products and actinides from spent nuclear fuel. Originally, reprocessing was used solely to extract plutonium for producing nuclear weapons. With commercialization of nuclear power, the ...
would increase, rather than reduce, the risk of
nuclear proliferation Nuclear proliferation is the spread of nuclear weapons to additional countries, particularly those not recognized as List of states with nuclear weapons, nuclear-weapon states by the Treaty on the Non-Proliferation of Nuclear Weapons, commonl ...
, by encouraging increased separation of plutonium from spent fuel in the civil
nuclear fuel cycle The nuclear fuel cycle, also known as the nuclear fuel chain, describes the series of stages that nuclear fuel undergoes during its production, use, and recycling or disposal. It consists of steps in the ''front end'', which are the preparation o ...
.


Overview

In every uranium-based nuclear reactor core there is both fission of uranium isotopes such as
uranium-235 Uranium-235 ( or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nat ...
, and the formation of new, heavier isotopes due to
neutron capture Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, wh ...
, primarily by
uranium-238 Uranium-238 ( or U-238) is the most common isotope of uranium found in nature, with a relative abundance of 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it i ...
. Most of the fuel mass in a reactor is uranium-238. By neutron capture and two successive
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron ...
s, uranium-238 becomes
plutonium-239 Plutonium-239 ( or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main iso ...
, which, by successive neutron capture, becomes
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. ...
, plutonium-241, plutonium-242, and (after further beta decays) other transuranic or
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
nuclides. Plutonium-239 and plutonium-241 are
fissile In nuclear engineering, fissile material is material that can undergo nuclear fission when struck by a neutron of low energy. A self-sustaining thermal Nuclear chain reaction#Fission chain reaction, chain reaction can only be achieved with fissil ...
, like uranium-235. Small quantities of
uranium-236 Uranium-236 ( or U-236) is an isotope of uranium that is neither fissile with thermal neutrons, nor very good fertile material, but is generally considered a nuisance and long-lived radioactive waste. It is found in spent nuclear fuel and in ...
,
neptunium-237 Neptunium (93Np) is usually considered an artificial element, although trace quantities are found in nature, so a standard atomic weight cannot be given. Like all trace or artificial elements, it has no stable isotopes. The first isotope to be ...
and
plutonium-238 Plutonium-238 ( or Pu-238) is a radioactive isotope of plutonium that has a half-life of 87.7 years. Plutonium-238 is a very powerful alpha emitter; as alpha particles are easily blocked, this makes the plutonium-238 isotope suitable for usage ...
are formed similarly from uranium-235. Normally, with low-enriched uranium fuel being changed every five years or so, most of the plutonium-239 is "burned" in the reactor. It behaves like uranium-235, with a slightly higher cross section for fission, and its fission releases a similar amount of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
. Typically, about one percent of the spent fuel discharged from a reactor is
plutonium Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four ...
, and some two-thirds of the plutonium is plutonium-239. Worldwide, almost 100 tonnes of plutonium in spent fuel arises each year. Reprocessing the plutonium into usable fuel increases the energy derived from the original uranium by some 12%, and if the uranium-235 is also recycled by re-enrichment, this becomes about 20%. Plutonium is only reprocessed and used once as MOX fuel; spent MOX fuel, with a high proportion of minor actinides and plutonium isotopes, is stored as waste. Existing
nuclear reactor A nuclear reactor is a device used to initiate and control a Nuclear fission, fission nuclear chain reaction. They are used for Nuclear power, commercial electricity, nuclear marine propulsion, marine propulsion, Weapons-grade plutonium, weapons ...
s must be re-licensed before MOX fuel can be introduced because using it changes the operating characteristics of a reactor, and the plant must be designed or adapted slightly to take it; for example, more control rods are needed. Often only a third to half of the fuel load is switched to MOX, but for more than 50% MOX loading, significant changes are necessary and a reactor needs to be designed accordingly. The System 80 reactor design deployed at the U.S.
Palo Verde Nuclear Generating Station The Palo Verde Generating Station is a nuclear power plant located near Tonopah, Arizona about west of downtown Phoenix. Palo Verde generates the most electricity of any power plant in the United States per year, and is the largest power pl ...
near
Phoenix, Arizona Phoenix ( ) is the List of capitals in the United States, capital and List of cities and towns in Arizona#List of cities and towns, most populous city of the U.S. state of Arizona. With over 1.6 million residents at the 2020 census, it is the ...
was designed for 100% MOX core compatibility, but so far has always operated on fresh low enriched uranium. In theory, the three Palo Verde reactors could use the MOX arising from seven conventionally fueled reactors each year and would no longer require fresh uranium fuel. Fast neutron BN-600 and BN-800 reactors are designed for 100% MOX loading. In 2022, the BN-800 was fully loaded with MOX fuel for the first time. According to
Atomic Energy of Canada Limited Atomic Energy of Canada Limited (AECL, Énergie atomique du Canada limitée, EACL) is a Canadian Crown corporation and the largest nuclear science and technology laboratory in Canada. AECL developed the CANDU reactor technology starting in th ...
(AECL), CANDU reactors could use 100% MOX cores without physical modification. AECL reported to the
United States National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Nati ...
committee on plutonium disposition that it has extensive experience in testing the use of MOX fuel containing from 0.5 to 3% plutonium.


Spent MOX fuel

The content of un-burnt plutonium in spent MOX fuel from thermal reactors is significant – greater than 50% of the initial plutonium loading. However, during the burning of MOX the ratio of fissile (odd numbered) isotopes to non-fissile (even) drops from around 65% to 20%, depending on burn up. This makes any attempt to recover the fissile isotopes difficult and any bulk Pu recovered would require such a high fraction of Pu in any second generation MOX that it would be impractical. This means that such a spent fuel would be difficult to reprocess for further reuse (burning) of plutonium. Regular reprocessing of biphasic spent MOX is difficult because of the low solubility of PuO2 in nitric acid. As of 2015, the only demonstration of twice-recycled, high-burnup fuel occurred in the Phénix fast reactor.


Applications

Reprocessing of commercial nuclear fuel to make MOX is performed in France and to a lesser extent in Russia, India and Japan. In the UK THORP operated from 1994 to 2018. China plans to develop
fast breeder reactor A breeder reactor is a nuclear reactor that generates more fissile material than it consumes. These reactors can be Nuclear fuel, fueled with more-commonly available isotopes of uranium and Isotopes of thorium, thorium, such as uranium-238 and t ...
s and reprocessing. Reprocessing of spent commercial-reactor nuclear fuel is not permitted in the United States due to nonproliferation considerations. Germany had plans for a reprocessing plant at Wackersdorf but as this failed to materialize, it instead relied on French nuclear reprocessing capabilities until legally outlawing the transport of German spent fuel for reprocessing in 2005. The United States was building a MOX fuel plant at the Savannah River Site in South Carolina. Although the
Tennessee Valley Authority The Tennessee Valley Authority (TVA) is a federally owned electric utility corporation in the United States. TVA's service area covers all of Tennessee, portions of Alabama, Mississippi, and Kentucky, and small areas of Georgia, North Carolin ...
(TVA) and
Duke Energy Duke Energy Corporation is an American electric power and natural gas holding company headquartered in Charlotte, North Carolina. The company ranked as the 141st largest company in the United States in 2024 – its highest-ever placement on the ...
expressed interest in using MOX reactor fuel from the conversion of weapons-grade plutonium, TVA (the most likely customer) said in April 2011 that it would delay a decision until it could see how MOX fuel performed in the nuclear accident at Fukushima Daiichi. In May 2018, the Department of Energy reported that the plant would require another $48 billion to complete, on top of the $7.6 billion already spent. Construction was cancelled.


Thermal reactors

Most modern thermal reactors using high burn up uranium oxide fuel produce a significant proportion of their output towards the end of core life from fission of plutonium produced by neutron capture in uranium 238 earlier in the life of the core, so adding some plutonium oxide to the fuel at manufacture is not in principle a very radical step. About 30 thermal reactors in Europe (Belgium, the Netherlands, Switzerland, Germany and France) are using MOX and an additional 20 have been licensed to do so. Most reactors use it as about one third of their core, but some will accept up to 50% MOX assemblies. In France, EDF aims to have all its 900 MWe series of reactors running with at least one-third MOX. Japan aimed to have one third of its reactors using MOX by 2010, and has approved construction of a new reactor with a complete fuel loading of MOX. As 2011, of the total nuclear fuel used, MOX provides about 2%. Licensing and safety issues of using MOX fuel include: * Plutonium oxide is substantially more toxic than uranium oxide, making fuel manufacture more difficult and expensive. * As plutonium isotopes absorb more neutrons than uranium fuels, reactor control systems may need modification. * MOX fuel tends to run hotter because of lower thermal conductivity, which may be an issue in some reactor designs. * Fission gas release in MOX fuel assemblies may limit the maximum burn-up time of MOX fuel. About 30% of the plutonium originally loaded into MOX fuel is consumed by use in a thermal reactor. In theory, if one third of the core fuel load is MOX and two-thirds uranium fuel, there is zero net change in the mass of plutonium in the spent fuel and the cycle could be repeated, but there are multiple difficulties in reprocessing spent MOX fuel. As of 2010, plutonium is only recycled once in thermal reactors, and spent MOX fuel is separated from the rest of the spent fuel to be stored as waste. All plutonium isotopes are either fissile or fertile, although plutonium-242 needs to absorb 3 neutrons before becoming fissile curium-245; in thermal reactors isotopic degradation limits the plutonium recycle potential. About 1% of
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
from current LWRs is plutonium, with approximate isotopic composition 52% , 24% , 15% , 6% and 2% when the fuel is first removed from the reactor.


Fast reactors

Because the fission-to-capture ratio of high energy or fast neutrons changes to favour fission for almost all of the actinides, including , fast reactors could use all of them for fuel. All actinides can undergo neutron induced fission with unmoderated or fast neutrons. A fast reactor is therefore more efficient than a thermal reactor for using plutonium and higher actinides as fuel. These fast reactors are better suited for the transmutation of other actinides than thermal reactors. Because thermal reactors use slow or moderated neutrons, the actinides that are not fissionable with thermal neutrons tend to absorb the neutrons instead of fissioning. This leads to a buildup of heavier actinides and lowers the number of thermal neutrons available to continue the chain reaction. A subcritical reactor with an external
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
could either be run in the fast neutron spectrum (without the need for highly enriched fuels as otherwise common in fast reactors) or use
thermal neutron The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium wit ...
s to breed fissile materials, compensating the loss of neutrons by increasing the flux from the neutron source.


Fabrication


Plutonium separation

The first step is separating the plutonium from the remaining uranium (about 96% of the spent fuel) and the fission products with other wastes (together about 3%) using the
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. It is based on liquid–liquid extraction ion-exchange. PUREX is the '' de facto'' standard aqueous nuclear reproc ...
process.


Dry mixing

MOX fuel can be made by grinding together uranium oxide (UO2) and plutonium oxide (PuO2) before the mixed oxide is pressed into pellets, but this process has the disadvantage of forming much radioactive dust.


Coprecipitation

A mixture of
uranyl nitrate Uranyl nitrate is a water-soluble yellow uranium salt with the formula . The hexa-, tri-, and dihydrates are known. The compound is mainly of interest because it is an intermediate in the preparation of nuclear fuels. In the nuclear industry, it ...
and plutonium nitrate in
nitric acid Nitric acid is an inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but samples tend to acquire a yellow cast over time due to decomposition into nitrogen oxide, oxides of nitrogen. Most com ...
is converted by treatment with a base such as ammonia to form a mixture of ammonium diuranate and plutonium hydroxide. After heating in a mixture of 5%
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
and 95%
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
will form a mixture of
uranium dioxide Uranium dioxide or uranium(IV) oxide (), also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reac ...
and
plutonium dioxide Plutonium(IV) oxide, or plutonia, is a chemical compound with the chemical formula, formula plutonium, Puoxygen, O2. This high melting-point solid is a principal compound of plutonium. It can vary in color from yellow to olive green, depending on ...
. Using a base, the resulting powder can be run through a press and converted into pellets. The pellets can then be
sintered Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, pla ...
into mixed uranium and plutonium oxide.


Americium content

Plutonium from reprocessed fuel is usually fabricated into MOX within less than five years of its production to avoid problems resulting from impurities produced by the decay of short-lived
isotope Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
s of plutonium. In particular, plutonium-241 decays to
americium-241 Americium-241 (Am, Am-241) is an isotope of americium. Like all isotopes of americium, it is radioactive, with a half-life of . Am is the most common isotope of americium as well as the most prevalent isotope of americium in nuclear waste. It ...
with a 14-year half-life. Because americium-241 is a
gamma ray A gamma ray, also known as gamma radiation (symbol ), is a penetrating form of electromagnetic radiation arising from high energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists o ...
emitter, its presence is a potential
occupational health Occupational safety and health (OSH) or occupational health and safety (OHS) is a multidisciplinary field concerned with the safety, health, and welfare of people at work (i.e., while performing duties required by one's occupation). OSH is re ...
hazard. It is possible, however, to remove the
americium Americium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element e ...
from the plutonium by a chemical separation process. Even under the worst conditions, the americium/plutonium mixture is less radioactive than a spent-fuel dissolution liquor, so it should be relatively straightforward to recover the plutonium by
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. It is based on liquid–liquid extraction ion-exchange. PUREX is the '' de facto'' standard aqueous nuclear reproc ...
or another aqueous reprocessing method.


Curium content

It is possible that both
americium Americium is a synthetic element, synthetic chemical element; it has Chemical symbol, symbol Am and atomic number 95. It is radioactive and a transuranic member of the actinide series in the periodic table, located under the lanthanide element e ...
and curium could be added to a U/Pu MOX fuel before it is loaded into a fast reactor or a subcritical reactor run in "Actinide burner mode". This is one means of transmutation. Work with curium is much harder than americium because curium is a neutron emitter, the MOX production line would need to be shielded with both
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
and
water Water is an inorganic compound with the chemical formula . It is a transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance. It is the main constituent of Earth's hydrosphere and the fluids of all known liv ...
to protect the workers. Also, the neutron irradiation of curium generates the higher
actinide The actinide () or actinoid () series encompasses at least the 14 metallic chemical elements in the 5f series, with atomic numbers from 89 to 102, actinium through nobelium. Number 103, lawrencium, is also generally included despite being part ...
s, such as
californium Californium is a synthetic chemical element; it has symbol Cf and atomic number 98. It was first synthesized in 1950 at Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory) by bombarding curium with al ...
, which increase the
neutron The neutron is a subatomic particle, symbol or , that has no electric charge, and a mass slightly greater than that of a proton. The Discovery of the neutron, neutron was discovered by James Chadwick in 1932, leading to the discovery of nucle ...
dose associated with the used nuclear fuel; this has the potential to pollute the fuel cycle with strong neutron emitters. As a result, it is likely that curium will be excluded from most MOX fuels. A subcritical reactor such as the Accelerator Driven System could "burn" such fuels if the problems associated with their handling and transportation are solved. However, to avoid power excursions due to unintended criticality, the neutronics must be known precisely at any given point in time, including the effect of build-up or consumption of neutron emitting nuclides as well as neutron poisons.


Thorium MOX

MOX fuel containing
thorium Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and ha ...
and plutonium oxides is also being tested. According to a Norwegian study, "the coolant void reactivity of the thorium-plutonium fuel is negative for plutonium contents up to 21%, whereas the transition lies at 16% for MOX fuel." The authors concluded, "Thorium-plutonium fuel seems to offer some advantages over MOX fuel with regards to control rod and
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
worths, CVR and plutonium consumption."


See also

* Hanford Site * Nuclear breeder reactor *
Nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radioactiv ...
*
Nuclear fuel cycle The nuclear fuel cycle, also known as the nuclear fuel chain, describes the series of stages that nuclear fuel undergoes during its production, use, and recycling or disposal. It consists of steps in the ''front end'', which are the preparation o ...
*
Nuclear power Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by ...
*
Nuclear power plant A nuclear power plant (NPP), also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power st ...
* Remix Fuel * Spent nuclear fuel shipping cask


References


External links


Technical Aspects of the Use of Weapons Plutonium as Reactor Fuel

Synergistic Nuclear Fuel Cycles of the Future






{{Authority control Nuclear fuels Nuclear reprocessing Plutonium compounds Uranium compounds