MA Model
   HOME

TheInfoList



OR:

In
time series analysis In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. ...
, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling
univariate In mathematics, a univariate object is an expression (mathematics), expression, equation, function (mathematics), function or polynomial involving only one Variable (mathematics), variable. Objects involving more than one variable are ''wikt:multi ...
time series. The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general
ARMA Arma, ARMA or variants, may refer to: Places * Arma, Kansas, United States * Arma, Nepal * Arma District, Peru * Arma District, Yemen * Arma Mountains, Afghanistan People * Arma people, an ethnic group of the middle Niger River valley * Arma lan ...
and
ARIMA Arima, officially The Royal Chartered Borough of Arima is the easternmost and second largest in area of the three boroughs of Trinidad and Tobago. It is geographically adjacent to Sangre Grande and Arouca at the south central foothills of the ...
models of
time series In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. ...
, which have a more complicated stochastic structure. Contrary to the AR model, the finite MA model is always stationary. The moving-average model should not be confused with the
moving average In statistics, a moving average (rolling average or running average or moving mean or rolling mean) is a calculation to analyze data points by creating a series of averages of different selections of the full data set. Variations include: #Simpl ...
, a distinct concept despite some similarities.


Definition

The notation MA(''q'') refers to the moving average model of order ''q'': : X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_ + \cdots + \theta_q \varepsilon_ = \mu + \sum_^q \theta_i \varepsilon_ + \varepsilon_, where \mu is the mean of the series, the \theta_1,...,\theta_q are the coefficients of the model and \varepsilon_t, \varepsilon_,..., \varepsilon_ are the error terms. The value of ''q'' is called the order of the MA model. This can be equivalently written in terms of the backshift operator ''B'' as :X_t = \mu + (1 + \theta_1 B + \cdots + \theta_q B^q)\varepsilon_t. Thus, a moving-average model is conceptually a
linear regression In statistics, linear regression is a statistical model, model that estimates the relationship between a Scalar (mathematics), scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A mode ...
of the current value of the series against current and previous (observed) white noise error terms or random shocks. The random shocks at each point are assumed to be mutually independent and to come from the same distribution, typically a
normal distribution In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac ...
, with location at zero and constant scale.


Interpretation

The moving-average model is essentially a
finite impulse response In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of ''finite'' duration, because it settles to zero in finite time. This is in contrast to infinite impuls ...
filter applied to white noise, with some additional interpretation placed on it. The role of the random shocks in the MA model differs from their role in the autoregressive (AR) model in two ways. First, they are propagated to future values of the time series directly: for example, \varepsilon _ appears directly on the right side of the equation for X_t. In contrast, in an AR model \varepsilon _ does not appear on the right side of the X_t equation, but it does appear on the right side of the X_ equation, and X_ appears on the right side of the X_t equation, giving only an indirect effect of \varepsilon_ on X_t. Second, in the MA model a shock affects X values only for the current period and ''q'' periods into the future; in contrast, in the AR model a shock affects X values infinitely far into the future, because \varepsilon _t affects X_t, which affects X_, which affects X_, and so on forever (see
Impulse response In signal processing and control theory, the impulse response, or impulse response function (IRF), of a dynamic system is its output when presented with a brief input signal, called an impulse (). More generally, an impulse response is the reac ...
).


Fitting the model

Fitting a moving-average model is generally more complicated than fitting an
autoregressive model In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregre ...
. This is because the lagged error terms are not observable. This means that iterative non-linear fitting procedures need to be used in place of linear least squares. Moving average models are linear combinations of past white noise terms, while autoregressive models are linear combinations of past time series values. ARMA models are more complicated than pure AR and MA models, as they combine both autoregressive and moving average components. The
autocorrelation function Autocorrelation, sometimes known as serial correlation in the discrete time case, measures the correlation of a signal with a delayed copy of itself. Essentially, it quantifies the similarity between observations of a random variable at differe ...
(ACF) of an MA(''q'') process is zero at lag ''q'' + 1 and greater. Therefore, we determine the appropriate maximum lag for the estimation by examining the sample autocorrelation function to see where it becomes insignificantly different from zero for all lags beyond a certain lag, which is designated as the maximum lag ''q''. Sometimes the ACF and
partial autocorrelation function In time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags. It contrasts with the autocorre ...
(PACF) will suggest that an MA model would be a better model choice and sometimes both AR and MA terms should be used in the same model (see Box–Jenkins method). Autoregressive Integrated Moving Average (ARIMA) models are an alternative to segmented regression that can also be used for fitting a moving-average model.


See also

*
Autoregressive–moving-average model In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a too ...
*
Autoregressive integrated moving average In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and pe ...
*
Autoregressive model In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc. The autoregre ...
*
Finite impulse response In signal processing, a finite impulse response (FIR) filter is a filter whose impulse response (or response to any finite length input) is of ''finite'' duration, because it settles to zero in finite time. This is in contrast to infinite impuls ...
*
Infinite impulse response Infinite impulse response (IIR) is a property applying to many linear time-invariant systems that are distinguished by having an impulse response h(t) that does not become exactly zero past a certain point but continues indefinitely. This is in ...


References


Further reading

*


External links


Common approaches to univariate time series
{{NIST-PD Time series models