Lysine-specific histone demethylase 1A (LSD1) also known as lysine (K)-specific demethylase 1A (KDM1A) is a
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''KDM1A''
gene
In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
.
LSD1 is a
flavin-dependent
monoamine oxidase
Monoamine oxidases (MAO) () are a family of enzymes that catalyze the oxidation of monoamines, employing oxygen to clip off their amine group. They are found bound to the outer membrane of mitochondria in most cell types of the body. The fi ...
, which can
demethylate mono- and di-methylated
lysine
Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
s, specifically
histone
In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
3, lysine 4 (H3K4). Other reported methylated lysine substrates such as histone H3K9 and TP53 have not been biochemically validated. This enzyme plays a critical role in oocyte growth,
embryogenesis
An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male ...
, hematopoiesis and tissue-specific
differentiation. LSD1 was the first histone demethylase to be discovered more than 30 years ago.
Structure
This gene encodes a nuclear protein containing a SWIRM domain, a
FAD
A fad, trend, or craze is any form of collective behavior that develops within a culture, a generation, or social group in which a group of people enthusiastically follow an impulse for a short time period.
Fads are objects or behaviors tha ...
-binding motif, and an
amine oxidase domain. This protein is a component of several complexes that include
histone deacetylase
Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on both histone and non-histone proteins. HDACs allow histones to wrap the DNA more tightly. This is important becaus ...
and DNA methytransferase 1, all of which are associated with the repression of gene transcription. It is now known the LSD1 complex mediates a coordinated
histone
In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
modification switch through these various enzymatic activities which in turn are recognized by histone "readers". The methylation of histone H3 at K4 can affect both the transcription of DNA and its replication.
Mechanism of Catalysis and Protein Function
LSD1 (lysine-specific demethylase 1), through a FAD-dependent oxidative reaction, specifically removes histone H3K4me2 to
H3K4me1
H3K4me1 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the mono-methylation at the 4th lysine residue of the histone H3 protein and often associated with gene enhancers.
Nomenclature
H3K4me1 i ...
or H3K4me0, but not H3K4me3.
The first step of the LSD1 catalytic reaction is the abstraction of hydride from the methyl of the H3K4 side chain N-methyl by FAD in the oxidized state that generates a stabilized methylene iminium ion. This is then hydrolyzed by a water molecule to give an unstable vicinal terminal hydroxyl amine that rapidly decomposes to yield the de-methylated lysine H3K4 molecule and formaldehyde. FAD is the reduced state reacts with molecular oxygen forming a covalent mono-hydroperoxide adduct which is then hydrolyzed by water to yield hydrogen peroxide regenerating the more stable FAD oxidized (resting) state. A highly conserved lysine (Lys661 in LSD1) at the active site in FAD-dependent amine oxidases is believed to assist in this reaction. The overall reaction stoichiometry thus involves the conversion of an N-methyl group by water and oxygen to give molecules of formaldehyde, hydrogen peroxide, and the product N-H terminus.
LSD1 cannot demethylate H3K4 trimethyl (N-tri-methyl-lysine) because the initial iminium species cannot be formed owing to a lack of an available lone electron pair at the N-center, essential for formation of the requisite stabilizing pi-system.
Given this mechanism, the mutant LSD1 with the Lys661Ala substitution is unlikely to adversely impact the interaction of LSD1 with various substrates, but rather leads to less efficient flavin recycling, which presumably then proceeds at the whim of any available non-specifically bound substitute water around that face of the FAD binding site. Thus, a mutation affecting K661 does retain some demethylase activity.
Even the structures of LSD1 at a 5 Å resolution clearly show how wide-ranging the protein-protein interactions are spread over the LSD1 Tower and SWIRM regions.
One method to examine the function of the LSD1 protein is to reduced the amount of ''KDM1A'' mRNA using a specific silencing RNA, so called siRNA knockdown. By this method, the loss of function shows a dependence of both hematopoietic stem and progenitor cells on LSD1 for self-renewal and maturation to fully differentiated blood cells. The interaction of LSD1 with the transcription factor
GFI1B is particularly important for regulating the balance in stem cells between replication and self-renewal as well as the maturation the megakaryocyte-erythroid progenitors to megakaryocytes.
A complementary method to the "knockdown" method is pharmacologic inhibition of LSD1; many such inhibitors such as
bomedemstat do not abrogate the scaffold function of LSD1 but rather inhibit the enzymatic activity as well as the ability of the LSD1 complex to bind transcription factors in the SNAIL family, most specifically GFI1 and GFI1B. Thus, these pharmacologic inhibitors have their greatest clinical utility in the treatment of hematologic diseases in which disruption of the LSD1-GFI1B or LSD1-GFI1 interaction is the therapeutic thesis for treatment. Indeed, the loss of the enzymatic activity of LSD1 has little effect on hematopoiesis unlike the effects of interfering with its binding to GFI1/1B.
Interactions
LSD1 has many different protein binding partners in a cell- and developmentally-specific manner. Both its enzymatic activity and function as a scaffold are important depending on the cellular context. Indeed, in
acute myeloid leukemia
Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal cells that build up in the bone marrow and blood and interfere with haematopoiesis, normal blood cell production. Sympt ...
(AML), the interaction of LSD1 and
GFI1B was definitively demonstrated to be necessary for the proliferation of leukemic initiating cells, while the LSD1 demethylase activity was not essential for this phenotype.
LSD1 can be a subunit of the
NuRD complex
In the field of molecular biology, the Mi-2/NuRD (Nucleosome Remodeling Deacetylase) complex, is a group of associated proteins with both adenosine triphosphate, ATP-dependent chromatin remodeling and histone deacetylase activities. , Mi-2/NuRD was ...
and, and as such, participates in the gene expression programs associated with metastasis in breast cancer. There is also evidence that the interaction of LSD1 with nuclear
GSK3β
Glycogen synthase kinase-3 beta, (GSK-3 beta), is an enzyme that in humans is encoded by the ''GSK3B'' gene. In mice, the enzyme is encoded by the Gsk3b gene. Abnormal regulation and expression of GSK-3 beta is associated with an increased susce ...
facilitates progression of certain cancers. High levels of nuclear GSK3β were found to promote the binding of LSD1 to the deubiquitinase, USP22, which prevented the degradation of LSD1 allowing LSD1 to accumulate to high levels. The accumulation of LSD1 has been correlated with tumor progression in certain cancers, including
glioblastoma
Glioblastoma, previously known as glioblastoma multiforme (GBM), is the most aggressive and most common type of cancer that originates in the brain, and has a very poor prognosis for survival. Initial signs and symptoms of glioblastoma are nons ...
, leukemia, and osteosarcoma.
Role in development
LSD1 appears to play an important role in the
epigenetic
In biology, epigenetics is the study of changes in gene expression that happen without changes to the DNA sequence. The Greek prefix ''epi-'' (ἐπι- "over, outside of, around") in ''epigenetics'' implies features that are "on top of" or "in ...
"reprogramming" that occurs when sperm and egg unite to form the zygote. Deletion of ''KDM1A'' impairs the growth and differentiation of
embryonic stem cell
Embryonic stem cells (ESCs) are Cell potency#Pluripotency, pluripotent stem cells derived from the inner cell mass of a blastocyst, an early-stage pre-Implantation (human embryo), implantation embryo. Human embryos reach the blastocyst stage 4� ...
s. Deletion of the mouse ortholog, ''Kdm1a'', has an embryonic lethal phenotype; embryos do not progress beyond gestational Day 7.5.
Clinical significance
As mentioned above, in several cancers, higher levels of expression of LSD1 are correlated with poorer outcomes suggesting LSD1 inhibition could be a part of an anti-neoplastic regimen. ''KDM1A'' has been found to be overexpressed in bladder, lung, and colorectal cancers. Inhibitors of LSD1 are being clinically tested for the treatment of extensive-disease small cell lung cancer, castrate-resistant prostate cancer, and acute meyloid leukemia.
Catalytic inhibitors of LSD1 such as
bomedemstat,
iadademstat,
phenelzine
Phenelzine, sold under the brand name Nardil among others, is a non-selective and irreversible monoamine oxidase inhibitor (MAOI) of the hydrazine family which is primarily used as an antidepressant and anxiolytic to treat depression and a ...
,
pulrodemstat,
seclidemstat, and
tranylcypromine
Tranylcypromine, sold under the brand name Parnate among others, is a monoamine oxidase inhibitor (MAOI). More specifically, tranylcypromine acts as nonselective and irreversible inhibitor of the enzyme monoamine oxidase (MAO). It is used a ...
are in clinical development for the treatment of hematologic malignancies including acute meyloid leukemeia and, for bomedemstat, the myeloproliferative neoplasms.
Given LSD1 is critical for the maturation of megakaryocytes, the bone marrow cells that produce platelets, LSD1 is well-suited as a target for the treatment of essential thrombocythemia, an indication currently in development for
bomedemstat by Imago BioSciences. Inc.
Mutations
De novo mutations in ''KDM1A'' have been reported in three patients with developmental delays complementing reports that loss-of-function mutations in ''SETD1A'', a histone H3K4 methyltransferase, contributes to the risk of schizophrenia. All documented mutations are missense substitutions.
LSD1 is rarely found to be mutated in cancer.
See also
*
Histone methylation
Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins that make up nucleosomes, which the DNA double helix wraps around to form chromosomes. Methylation of histones can either increase or decrea ...
*
UM171
References
External links
*
*
{{NLM content