History
Alcator A
In the late 1960s, magnetic-confinement fusion research at MIT was carried out on small-scale "table-top" experiments at the Research Laboratory for Electronics and the Francis Bitter Magnet Laboratory. At this time, the Soviet Union was developing a tokamak (though this was unknown in the United States), and Princeton Plasma Physics Laboratory (PPPL) was developing the stellarator. Bruno Coppi was working at the Institute for Advanced Study in Princeton, New Jersey and was interested in the basic plasma physics problem of plasma resistivity at high values of theAlcator B and C
The success of Alcator A led to the conceptual design, beginning in 1975, of a larger machine called Alcator B. However, the motor-generators used for Alcator A were not powerful enough to drive the new machine, necessitating the purchase and installation of new power supplies, a cost that theUnfunded ideas and the C-Mod proposal
Several ideas for new devices and upgrades at the PSFC were never funded. From 1978 to 1980, a design activity was carried out for Alcator D, a larger version of Alcator C that would allow for more heating power, and possibly even deuterium–tritium (D–T) operation. This design was never formally proposed to the Department of Energy (DOE), but continued to evolve under Coppi's direction, eventually becoming the Italian–Russian IGNITOR device planned for construction at TRINITY near Troitsk, Russia. In 1982, another more ambitious device called Alcator DCT was conceived. This machine would have superconducting coils producing 7 T on axis. 4 MW of lower hybrid current drive would drive a steady-state plasma with 1.4 MA plasma current. As this design was similar to the French Tore Supra, a joint French–American workshop was held in Cadarache in 1983 to compare the two designs and exchange ideas. Alcator DCT was formally proposed to the DOE in late 1983 but was not funded. At that time, the budget for magnetic fusion energy research in the United States had been increasing year-over-year, reaching a peak of $468.4 million in fiscal 1984. That year, the PSFC was notified that for a time, budgets would be falling, and DOE policy would be to only fund upgrades to existing devices, not new machines. Thus, design work was begun on a copper-coil machine which would reuse some of the power supplies from Alcator C, allowing the team to pitch it as a "modification" to Alcator C. The conceptual design was completed and Alcator C-Mod was formally proposed to DOE in late 1985. The project was approved and construction was authorized in 1986.Characteristics
Heating and current drive
Alcator C-Mod uses ion cyclotron range frequencies (ICRF) heating as its primary auxiliary heating source. The source frequency is 80 MHz and the standard minority heating scenarios are D(H) for 4.4–6.9 T and D(3He) for high field operation (7.3–8.0 T). A minority species (Hydrogen or He3) is indicated, and ICRH scenarios use a two-component plasma. Absorption efficiency varies with the minority concentration. It is also possible to transition between minority and mode conversion (MC) heating by varying the minority species concentration. The relative H fraction can be scanned from roughly 2–30% via gas puffing and measured using passive charge exchange. The relative He3 fraction concentration can also be scanned from roughly 2–30% via gas puffing. Phase contrast imaging (PCI) can be used to measure the mode converted waves directly in the plasma.Minority heating
Minority heating is the most common scenario used at C-Mod. The ICRF heating system operates at 80 MHz in D(H) plasmas. This frequency corresponds to on-axis minority fundamental cyclotron resonance of protons at 5.3 T and absorbing fast waves by hydrogen minority species in a deuterium plasma. It can be very efficient (typical single pass absorption in C-Mod is 80–90% for minority concentrations of 5–10%). Minority heating at 80 MHz and 7.9 T in a deuterium majority plasma is achieved using the He3 minority resonance (on-axis), but single pass absorption with He3 minority ions in deuterium tends to be much lower than for protons (e.g. the minority heating scenario at 5.3–5.4 T).Mode conversion heating
Mode conversion of a fast magnetosonic wave to an ion cyclotron wave and ion Bernstein wave in the ion cyclotron range of frequencies (ICRF) can be used to heat electrons. Mode conversion heating is done at C-Mod using the ICRF in D(3He) plasmas.Lower hybrid current drive
Lower hybrid current drive (LHCD) (based on Lower hybrid oscillation) is used to supplement the current driven by the Ohmic transformer. The LHCD system is capable of delivering 1.0+ MW of microwave power (planned upgrade to 2 MW or more with addition of a second antenna in 2013) to the plasma at 4.6 GHz. Power is provided by 250 kW klystron microwave amplifiers manufactured by CPI, Inc. Non- inductive operation for up to 0.5 s pulses at 500 kA was achieved. Lower hybrid waves are launched preferentially in the direction opposite the plasma current (i.e. in the direction of electron travel) and deposit energy on electrons moving at approximately three times the thermal velocity via Landau damping. A major area of LHCD research has been in the area of current drive at the high densities (ne > 1020 m−3) required for a fusion power plant.2013–2016: Final operations and shutdown
Alcator C-Mod was slated to shut down in October 2013. However, the 2014 Congressional omnibus spending bill explicitly specified operation of the experiment, providing $22 million. The experimental operation was restarted in February 2014. Funding was once again extended for FY 2015, although the omnibus bill that provided the funding explicitly stated that no funding would be provided beyond FY 2016. In 2016 Alcator C-Mod set a world record for plasma pressure in a magnetically confined fusion device, reaching 2.05 atmospheres – a 15 percent jump over the previous record of 1.77 atmospheres (also held by Alcator C-Mod). This record plasma had a temperature of 35 million degrees C, lasted for 2 seconds, and yielded 600 trillion fusion reactions. The run involved operation with a toroidal magnetic field of 5.7 tesla. It reached this milestone on its final day of operation. Following completion of operations at the end of September 2016, the facility has been placed into safe shutdown, with no additional experiments planned at this time. There is a wealth of data archived from the more than 20 years of operations, and the experimental and theoretical teams continue to analyze the results and publish them in the scientific literature.http://www.psfc.mit.edu/research/topics/alcator-c-mod-tokamak The Alcator C-Mod plasma pressure record of 2.05 atmosphere will likely hold for some time. The only machine currently under construction that is predicted to break this record is theReferences
Sources
Footnotes
External links
* {{fusion experiments Tokamaks Massachusetts Institute of Technology