A longitudinal mode of a
resonant cavity
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonat ...
is a particular
standing wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
pattern formed by
wave
In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance (change from equilibrium) of one or more quantities. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (r ...
s confined in the cavity. The longitudinal modes correspond to the
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s of the wave which are reinforced by constructive
interference
Interference is the act of interfering, invading, or poaching. Interference may also refer to:
Communications
* Interference (communication), anything which alters, modifies, or disrupts a message
* Adjacent-channel interference, caused by extra ...
after many reflections from the cavity's reflecting surfaces. All other wavelengths are suppressed by destructive interference.
A longitudinal mode pattern has its
nodes
In general, a node is a localized swelling (a "knot") or a point of intersection (a vertex).
Node may refer to:
In mathematics
*Vertex (graph theory), a vertex in a mathematical graph
*Vertex (geometry), a point where two or more curves, lines, ...
located axially along the length of the cavity.
Transverse mode
A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwa ...
s, with nodes located perpendicular to the axis of the cavity, may also exist.
Simple cavity
A common example of longitudinal modes are the
light
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
wavelengths produced by a
laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The firs ...
. In the simplest case, the laser's
optical cavity An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and pro ...
is formed by two opposed plane (flat)
mirror
A mirror or looking glass is an object that Reflection (physics), reflects an image. Light that bounces off a mirror will show an image of whatever is in front of it, when focused through the lens of the eye or a camera. Mirrors reverse the ...
s surrounding the
gain medium
The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a h ...
(a plane-parallel or
Fabry–Pérot cavity). The allowed modes of the cavity are those where the mirror separation distance ''L'' is equal to an exact multiple of half the wavelength, ''λ'':
:
where ''q'' is an integer known as the mode order.
In practice, the separation distance of the mirrors ''L'' is usually much greater than the wavelength of light ''λ'', so the relevant values of ''q'' are large (around 10
5 to 10
6). The frequency separation between any two adjacent modes, ''q'' and ''q''+1, in a material that is transparent at the laser wavelength, are given (for an empty linear resonator of length ''L'') by Δ''ν'':
:
where ''c'' is the speed of light and n is the refractive index of the material (note: n≈1 in air).
Composite cavity
If the cavity is non-empty (i.e. contains one or more elements with different values of
refractive index
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.
The refractive index determines how much the path of light is bent, o ...
), the values of ''L'' used are the
optical path length In optics, optical path length (OPL, denoted ''Λ'' in equations), also known as optical length or optical distance, is the product of the geometric length of the optical path followed by light and the refractive index of homogeneous medium throu ...
s for each element. The frequency spacing of longitudinal modes in the cavity is then given by:
: