HOME

TheInfoList



OR:

In theoretical physics, the logarithmic Schrödinger equation (sometimes abbreviated as LNSE or LogSE) is one of the nonlinear modifications of Schrödinger's equation. It is a classical wave equation with applications to extensions of quantum mechanics, quantum optics, nuclear physics, transport and diffusion phenomena, open
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
systems and
information theory Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
, effective
quantum gravity Quantum gravity (QG) is a field of theoretical physics that seeks to describe gravity according to the principles of quantum mechanics; it deals with environments in which neither gravitational nor quantum effects can be ignored, such as in the vi ...
and physical vacuum models and theory of superfluidity and Bose–Einstein condensation. Its relativistic version (with D'Alembertian instead of
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
and first-order time derivative) was first proposed by
Gerald Rosen Gerald Ellis Rosen (born October 26, 1951) is a former United States district judge of the United States District Court for the Eastern District of Michigan. Professional career Prior to taking the bench, Rosen was a senior partner in the law ...
. It is an example of an integrable model.


The equation

The logarithmic Schrödinger equation is the
partial differential equation In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a Multivariable calculus, multivariable function. The function is often thought of as an "unknown" to be sol ...
. In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
and mathematical physics one often uses its dimensionless form: i \frac + \nabla^2 \psi + \psi \ln , \psi, ^2 = 0. for the
complex-valued In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
function of the particles
position vector In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents the position of a point ''P'' in space in relation to an arbitrary reference origin ''O''. Usually denoted x, r, or s ...
at time , and \nabla^2 \psi = \frac + \frac + \frac is the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
of in
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
. The logarithmic term \psi \ln , \psi, ^2 has been shown indispensable in determining the speed of sound scales as the cubic root of pressure for Helium-4 at very low temperatures. This logarithmic term is also needed for cold sodium atoms. In spite of the logarithmic term, it has been shown in the case of central potentials, that even for non-zero angular momentum, the LogSE retains certain symmetries similar to those found in its linear counterpart, making it potentially applicable to atomic and nuclear systems. The relativistic version of this equation can be obtained by replacing the derivative operator with the D'Alembertian, similarly to the Klein–Gordon equation. Soliton-like solutions known as Gaussons figure prominently as analytical solutions to this equation for a number of cases.


See also

* Nonlinear Schrödinger equation *
Superfluid Helium-4 Superfluid helium-4 is the superfluid form of helium-4, an isotope of the element helium. A superfluid is a state of matter in which matter behaves like a fluid with zero viscosity. The substance, which looks like a normal liquid, flows without ...
*
Superfluid vacuum theory Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum (non-removable background) is viewed as superfluid or as a Bose–Einstei ...


References


External links

* {{DEFAULTSORT:Logarithmic Schrodinger Equation Theoretical physics Schrödinger equation