Locally Isomorphic Groups
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points).


Properties of a point on a function

Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
of points. This is to be contrasted with the idea of global minimum (or global maximum), which corresponds to the minimum (resp., maximum) of the function across its entire domain.


Properties of a single space

A
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
is sometimes said to exhibit a property locally, if the property is exhibited "near" each point in one of the following ways: # Each point has a
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
exhibiting the property; # Each point has a neighborhood base of sets exhibiting the property. Here, note that condition (2) is for the most part stronger than condition (1), and that extra caution should be taken to distinguish between the two. For example, some variation in the definition of locally compact can arise as a result of the different choices of these conditions.


Examples

* Locally compact topological spaces * Locally connected and
Locally path-connected In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting of open connected sets. As a stronger notion, the space ''X'' is locally path connected if e ...
topological spaces * Locally Hausdorff, Locally regular, Locally normal etc... * Locally metrizable


Properties of a pair of spaces

Given some notion of equivalence (e.g.,
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
, diffeomorphism, isometry) between
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s, two spaces are said to be locally equivalent if every point of the first space has a neighborhood which is equivalent to a neighborhood of the second space. For instance, the
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
and the line are very different objects. One cannot stretch the circle to look like the line, nor compress the line to fit on the circle without gaps or overlaps. However, a small piece of the circle can be stretched and flattened out to look like a small piece of the line. For this reason, one may say that the circle and the line are locally equivalent. Similarly, the
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
and the plane are locally equivalent. A small enough observer standing on the surface of a sphere (e.g., a person and the Earth) would find it indistinguishable from a plane.


Properties of infinite groups

For an infinite group, a "small neighborhood" is taken to be a finitely generated
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
. An infinite group is said to be locally ''P'' if every finitely generated subgroup is ''P''. For instance, a group is locally finite if every finitely generated subgroup is finite, and a group is locally soluble if every finitely generated subgroup is soluble.


Properties of finite groups

For
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s, a "small neighborhood" is taken to be a subgroup defined in terms of a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
''p'', usually the local subgroups, the normalizers of the nontrivial ''p''-subgroups. In which case, a property is said to be local if it can be detected from the local subgroups. Global and local properties formed a significant portion of the early work on the
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
, which was carried out during the 1960s.


Properties of commutative rings

{{main, local ring For commutative rings, ideas of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
make it natural to take a "small neighborhood" of a ring to be the localization at a prime ideal. In which case, a property is said to be local if it can be detected from the
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
s. For instance, being a flat module over a commutative ring is a local property, but being a
free module In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commu ...
is not. For more, see Localization of a module.


See also

* Local path connectedness *
Local-global principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an diophantine equation, integer solution to an equation by using the Chinese remainder theorem to piece together solutions mo ...


References

General topology Homeomorphisms