In
algebraic topology, a locally constant sheaf on a
topological space ''X'' is a
sheaf on ''X'' such that for each ''x'' in ''X'', there is an open neighborhood ''U'' of ''x'' such that the restriction
is a
constant sheaf
Constant or The Constant may refer to:
Mathematics
* Constant (mathematics), a non-varying value
* Mathematical constant, a special number that arises naturally in mathematics, such as or
Other concepts
* Control variable or scientific con ...
on ''U''. It is also called a local system. When ''X'' is a
stratified space, a
constructible sheaf is roughly a sheaf that is locally constant on each member of the stratification.
A basic example is the
orientation sheaf In the mathematical field of algebraic topology, the orientation sheaf on a manifold ''X'' of dimension ''n'' is a locally constant sheaf ''o'X'' on ''X'' such that the stalk of ''o'X'' at a point ''x'' is
:o_ = \operatorname_n(X, X - \)
(in t ...
on a manifold since each point of the manifold admits an ''orientable'' open neighborhood (while the manifold itself may not be orientable.)
For another example, let
,
be the sheaf of holomorphic functions on ''X'' and
given by
. Then the kernel of ''P'' is a locally constant sheaf on
but not constant there (since it has no nonzero global section).
If
is a locally constant sheaf of sets on a space ''X'', then each path
in ''X'' determines a bijection
Moreover, two homotopic paths determine the same bijection. Hence, there is the well-defined functor
:
where
is the
fundamental groupoid In algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of ...
of ''X'': the category whose objects are points of ''X'' and whose morphisms are homotopy classes of paths. Moreover, if ''X'' is path-connected, locally path-connected and semi-locally simply connected (so ''X'' has a
universal cover), then every functor
is of the above form; i.e., the functor category
is equivalent to the category of locally constant sheaves on ''X''.
If ''X'' is
locally connected, the adjunction between the category of
presheaves
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could ...
and
bundles restricts to an equivalence between the category of locally constant sheaves and the category of
covering spaces of ''X''.
References
*
*
External links
*
*https://golem.ph.utexas.edu/category/2010/11/locally_constant_sheaves.html (recommended)
Algebraic topology
Topological spaces
{{topology-stub