HOME

TheInfoList



OR:

Local field potentials (LFP) are transient electrical signals generated in nervous and other tissues by the summed and synchronous electrical activity of the individual cells (e.g. neurons) in that tissue. LFP are "extracellular" signals, meaning that they are generated by transient imbalances in ion concentrations in the spaces outside the cells, that result from cellular electrical activity. LFP are 'local' because they are recorded by an electrode placed nearby the generating cells. As a result of the Inverse-square law, such electrodes can only 'see' potentials in spatially limited radius. They are 'potentials' because they are generated by the voltage that results from charge separation in the extracellular space. They are 'field' because those extracellular charge separations essentially create a local electric field. LFP are typically recorded with a high-impedance microelectrode placed in the midst of the population of cells generating it. They can be recorded, for example, via a microelectrode placed in the
brain The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It consists of nervous tissue and is typically located in the head ( cephalization), usually near organs for special ...
of a human or animal subject, or in an
in vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology and ...
brain thin slice.


Background

During local field potential recordings, a signal is recorded using an extracellular microelectrode placed sufficiently far from individual local
neurons A neuron, neurone, or nerve cell is an electrically excitable cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous tissue in all animals except sponges and placozoa. ...
to prevent any particular cell from dominating the electrophysiological signal. This signal is then
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
ed, cut off at ~300 Hz, to obtain the local field potential (LFP) that can be recorded electronically or displayed on an oscilloscope for analysis. The low impedance and positioning of the
electrode An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials ...
allows the activity of a large number of neurons to contribute to the signal. The unfiltered signal reflects the sum of action potentials from cells within approximately 50-350 μm from the tip of the electrode and slower ionic events from within 0.5–3 mm from the tip of the electrode. The low-pass filter removes the spike component of the signal and passes the lower
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from '' angular frequency''. Frequency is measured in hertz (Hz) which is ...
signal, the LFP. The voltmeter or analog-to-digital converter to which the microelectrode is connected measures the
electrical potential difference The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
(measured in volts) between the microelectrode and a reference electrode. One end of the reference electrode is also connected to the voltmeter while the other end is placed in a medium which is continuous with, and compositionally identical to the extracellular medium. In a simple fluid, with no biological component present, there would be slight fluctuations in the measured potential difference around an equilibrium point, this is known as the thermal noise. This is due to the random movement of ions in the medium and electrons in the electrode. However, when placed in neural tissue the opening of an ion channel results in the net flow of ions into the cell from the extracellular medium, or out of the cell into the extracellular medium. These local currents result in larger changes in the electrical potential between the local extracellular medium and the interior of the recording electrode. The overall recorded signal thus represents the potential caused by the sum of all local currents on the surface of the electrode.


Synchronised input

The local field potential is believed to represent the synchronised input into the observed area, as opposed to the spike data, which represents the output from the area. In the LFP, high-frequency fluctuations in the potential difference are filtered out, leaving only the slower fluctuations. The fast fluctuations are mostly caused by the short inward and outward currents of action potentials, while the direct contribution of action potentials is minimal in the LFP. The LFP is thus composed of the more sustained currents in the tissue, such as the synaptic and somato-
dendritic Dendrite derives from the Greek word "dendron" meaning ( "tree-like"), and may refer to: Biology * Dendrite, a branched projection of a neuron * Dendrite (non-neuronal), branching projections of certain skin cells and immune cells Physical *Dend ...
currents. Data-driven models have shown a predictive relationship between the LFPs and spike activity. The major slow currents involved in generating the LFP are believed to be the same that generate the postsynaptic potential (PSP). It was originally thought that EPSPs and IPSPs were the exclusive constituents of LFPs, but phenomena unrelated to synaptic events were later found to contribute to the signal (Kobayashi 1997).


Geometrical arrangement

Which cells contribute to the slow field variations is determined by the geometric configuration of the cells themselves. In some cells, the dendrites face one direction and the soma another, such as the pyramidal cells. This is known as an open field geometrical arrangement. When there is simultaneous activation of the dendrites a strong dipole is produced. In cells where the dendrites are arranged more radially, the potential difference between individual dendrites and the soma tend to cancel out with diametrically opposite dendrites, this configuration is called a closed field geometrical arrangement. As a result the net potential difference over the whole cell when the dendrites are simultaneously activated tends to be very small. Thus changes in the local field potential represent simultaneous dendritic events in cells in the open field configuration.


Low-pass filtering of extracellular space

Part of the
low-pass filter A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filt ...
ing giving rise to local field potentials is due to complex electrical properties of extracellular space. The fact that the extracellular space is not homogeneous, and composed of a complex aggregate of highly
conductive In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gen ...
fluids and low-conductive and capacitive membranes, can exert strong low-pass filtering properties. Ionic
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
, which plays an important role in membrane potential variations, can also act as a low-pass filter.


References

{{Reflist


External links


Mechanisms of local field potentials (Scholarpedia)
Electrophysiology Action potentials