Algorithms
1980s-1990s
Simulated annealing (Kirkpatrick et al., 1983)
Ant colony optimization (ACO) (Dorigo, 1992)
The ant colony optimization algorithm is aParticle swarm optimization (PSO) (Kennedy & Eberhart, 1995)
Particle swarm optimization is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate solutions, dubbed particles, and moving these particles around in the search space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position but is also guided toward the best-known positions in the search-space, which are updated as better positions are found by other particles. This is expected to move the swarm toward the best solutions. PSO is originally attributed to2000s
Harmony search (HS) (Geem, Kim & Loganathan, 2001)
Harmony search is a phenomenon-mimicking metaheuristic introduced in 2001 by Zong Woo Geem, Joong Hoon Kim, and G. V. Loganathan and is inspired by the improvization process of jazz musicians. In the HS algorithm, a set of possible solutions is randomly generated (called Harmony memory). A new solution is generated by using all the solutions in the Harmony memory (rather than just two as used in GA) and if this new solution is better than the worst solution in Harmony memory, the worst solution gets replaced by this new solution. The effectiveness and advantages of HS have been demonstrated in various applications like design of municipal water distribution networks, structural design, load dispatch problem in electrical engineering, multi-objective optimization, rostering problems, clustering, and classification and feature selection. A detailed survey on applications of HS can be found. and applications of HS in data mining can be found in. Dennis (2015) claimed that harmony search is a special case of the evolution strategies algorithm. However, Saka et al. (2016) argues that the structure of evolution strategies is different from that of harmony search.Artificial bee colony algorithm (Karaboga, 2005)
Artificial bee colony algorithm is a metaheuristic introduced by Karaboga in 2005 which simulates the foraging behaviour of honey bees. The ABC algorithm has three phases: employed bee, onlooker bee and scout bee. In the employed bee and the onlooker bee phases, bees exploit the sources by local searches in the neighbourhood of the solutions selected based on deterministic selection in the employed bee phase and the probabilistic selection in the onlooker bee phase. In the scout bee phase, which is analogous to bees abandoning exhausted food sources in the foraging process, solutions that are not beneficial anymore for search progress are abandoned, and new solutions are inserted instead to explore new regions in the search space. The algorithm has a well-balanced exploration and exploitation ability.Bees algorithm (Pham, 2005)
The bees algorithm was formulated by Pham and his co-workers in 2005Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S and Zaidi M. The Bees Algorithm. Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005. and further refined in 2009. Modelled on the foraging behaviour of honey bees, the algorithm combines global explorative search with local exploitative search. A small number of artificial bees (scouts) explores randomly the solution space (environment) for solutions of high fitness (highly profitable food sources), whilst the bulk of the population search (harvest) the neighbourhood of the fittest solutions looking for the fitness optimum. A deterministic recruitment procedure which simulates the waggle dance of biological bees is used to communicate the scouts' findings to the foragers and distribute the foragers depending on the fitness of the neighbourhoods selected for local search. Once the search in the neighbourhood of a solution stagnates, the local fitness optimum is considered to be found, and the site is abandoned.Imperialist competitive algorithm (Atashpaz-Gargari & Lucas, 2007)
The imperialist competitive algorithm (ICA), like most of the methods in the area ofRiver formation dynamics (Rabanal, Rodríguez & Rubio, 2007)
River formation dynamics is based on imitating how water forms rivers by eroding the ground and depositing sediments (the drops act as the swarm). After drops transform the landscape by increasing/decreasing the altitude of places, solutions are given in the form of paths of decreasing altitudes. Decreasing gradients are constructed, and these gradients are followed by subsequent drops to compose new gradients and reinforce the best ones. This heuristic optimization method was proposed in 2007 by Rabanal et al. The applicability of RFD to other NP-complete problems has been studied, and the algorithm has been applied to fields such as routing and robot navigation. The main applications of RFD can be found at the survey Rabanal et al. (2017).Gravitational search algorithm (Rashedi, Nezamabadi-pour & Saryazdi, 2009)
The gravitational search algorithm is based on the2010s
Bat algorithm (Yang, 2010)
Bat algorithm is a swarm-intelligence-based algorithm, inspired by the echolocation behavior of microbats. BA automatically balances exploration (long-range jumps around the global search space to avoid getting stuck around one local maximum) with exploitation (searching in more detail around known good solutions to find local maxima) by controlling loudness and pulse emission rates of simulated bats in the multi-dimensional search space.Spiral optimization (SPO) algorithm (Tamura & Yasuda 2011, 2016-2017)
Criticism of the metaphor methodology
While individual metaphor-inspired metaheuristics have produced remarkably effective solutions to specific problems,Alexander Brownlee and John R. Woodward (2015)In recent years, the field of combinatorial optimization has witnessed a true tsunami of "novel" metaheuristic methods, most of them based on a metaphor of some natural or man-made process. The behavior of virtually any species of insects, the flow of water, musicians playing together – it seems that no idea is too far-fetched to serve as inspiration to launch yet another metaheuristic. will argue that this line of research is threatening to lead the area of metaheuristics away from scientific rigor.Sörensen and Glover stated:
A large (and increasing) number of publications focuses on the development of (supposedly) new metaheuristic frameworks based on metaphors. The list of natural or man-made processes that has been used as the basis for a metaheuristic framework now includes such diverse processes as bacterial foraging, river formation, biogeography, musicians playing together, electromagnetism, gravity, colonization by an empire, mine blasts, league championships, clouds, and so forth. An important subcategory is found in metaheuristics based on animal behavior. Ants, bees, bats, wolves, cats, fireflies, eagles, dolphins, frogs, salmon, vultures, termites, flies, and many others, have all been used to inspire a "novel" metaheuristic. ..As a general rule, publication of papers on metaphor-based metaheuristics has been limited to second-tier journals and conferences, but some recent exceptions to this rule can be found. Sörensen (2013) states that research in this direction is fundamentally flawed. Most importantly, the author contends that the novelty of the underlying metaphor does not automatically render the resulting framework "novel". On the contrary, there is increasing evidence that very few of the metaphor-based methods are new in any interesting sense.In response, Springer's ''Journal of Heuristics'' has updated their editorial policy to state:
Proposing new paradigms is only acceptable if they contain innovative basic ideas, such as those that are embedded in classical frameworks likeThe policy of Springer's journal 4OR - A Quarterly Journal of Operations Research states:genetic algorithm In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to gene ...s, tabu search, and simulated annealing. The Journal of Heuristics avoids the publication of articles that repackage and embed old ideas in methods that are claimed to be based on metaphors of natural or manmade systems and processes. These so-called "novel" methods employ analogies that range fromintelligent water drops This is a chronologically ordered list of metaphor-based metaheuristics and swarm intelligence algorithms, sorted by decade of proposal. Algorithms 1980s-1990s Simulated annealing (Kirkpatrick et al., 1983) Simulated annealing is a pro ..., musicians playing jazz, imperialist societies, leapfrogs, kangaroos, all types of swarms and insects and even mine blast processes (Sörensen, 2013). If a researcher uses a metaphor to stimulate his or her own ideas about a new method, the method must nevertheless be translated into metaphor-free language, so that the strategies employed can be clearly understood, and their novelty is made clearly visible. (See items 2 and 3 below.) Metaphors are cheap and easy to come by. Their use to "window dress" a method is not acceptable." ..Implementations should be explained by employing standard optimization terminology, where a solution is called a "solution" and not something else related to some obscure metaphor (e.g., harmony, flies, bats,countries A country is a distinct part of the world, such as a state (polity), state, nation, or other polity, political entity. It may be a sovereign state or make up one part of a larger state. For example, the country of Japan is an independent, so ..., etc.). ..The Journal of Heuristics fully endorses Sörensen's view that metaphor-based “novel” methods should not be published if they cannot demonstrate a contribution to their field. Renaming existing concepts does not count as a contribution. Even though these methods are often called “novel”, many present no new ideas, except for the occasional marginal variant of an already existing methodology. These methods should not take the journal space of truly innovative ideas and research. Since they do not use the standard optimization vocabulary, they are unnecessarily difficult to understand.
The emphasis on scientific rigor and on innovation implies, in particular, that the journal does not publish articles that simply propose disguised variants of known methods without adequate validation (e.g., metaheuristics that are claimed to be "effective" on the sole basis of metaphorical comparisons with natural or artificial systems and processes). New methods must be presented in metaphor-free language by establishing their relationship with classical paradigms. Their properties must be established on the basis of scientifically compelling arguments: mathematical proofs, controlled experiments, objective comparisons, etc.
See also
* Conceptual metaphor *Notes
References
* * * *External links