HOME

TheInfoList



OR:

The following is a list of
indefinite integral In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolicall ...
s (
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
s) of expressions involving the
inverse hyperbolic function In mathematics, the inverse hyperbolic functions are the inverse functions of the hyperbolic functions. For a given value of a hyperbolic function, the corresponding inverse hyperbolic function provides the corresponding hyperbolic angle. The ...
s. For a complete list of integral formulas, see lists of integrals. * In all formulas the constant is assumed to be nonzero, and denotes the
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connect ...
. * For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.


Inverse hyperbolic sine integration formulas

\int\operatorname(ax)\,dx= x\operatorname(ax)-\frac+C \int x\operatorname(ax)\,dx= \frac+ \frac- \frac+C \int x^2\operatorname(ax)\,dx= \frac- \frac+C \int x^m\operatorname(ax)\,dx= \frac- \frac\int\frac\,dx\quad(m\ne-1) \int\operatorname(ax)^2\,dx= 2x+x\operatorname(ax)^2- \frac+C \int\operatorname(ax)^n\,dx= x\operatorname(ax)^n- \frac+ n(n-1)\int\operatorname(ax)^\,dx \int\operatorname(ax)^n\,dx= -\frac+ \frac+ \frac\int\operatorname(ax)^\,dx\quad(n\ne-1,-2)


Inverse hyperbolic cosine integration formulas

\int\operatorname(ax)\,dx= x\operatorname(ax)- \frac+C \int x\operatorname(ax)\,dx= \frac- \frac- \frac+C \int x^2\operatorname(ax)\,dx= \frac-\frac+C \int x^m\operatorname(ax)\,dx= \frac- \frac\int\frac\,dx\quad(m\ne-1) \int\operatorname(ax)^2\,dx= 2x+x\operatorname(ax)^2- \frac+C \int\operatorname(ax)^n\,dx= x\operatorname(ax)^n- \frac+ n(n-1)\int\operatorname(ax)^\,dx \int\operatorname(ax)^n\,dx= -\frac+ \frac+ \frac\int\operatorname(ax)^\,dx\quad(n\ne-1,-2)


Inverse hyperbolic tangent integration formulas

\int\operatorname(ax)\,dx= x\operatorname(ax)+ \frac+C \int x\operatorname(ax)\,dx= \frac- \frac+\frac+C \int x^2\operatorname(ax)\,dx= \frac+ \frac+\frac+C \int x^m\operatorname(ax)\,dx= \frac- \frac\int\frac\,dx\quad(m\ne-1)


Inverse hyperbolic cotangent integration formulas

\int\operatorname(ax)\,dx= x\operatorname(ax)+ \frac+C \int x\operatorname(ax)\,dx= \frac- \frac+\frac+C \int x^2\operatorname(ax)\,dx= \frac+ \frac+\frac+C \int x^m\operatorname(ax)\,dx= \frac+ \frac\int\frac\,dx\quad(m\ne-1)


Inverse hyperbolic secant integration formulas

\int\operatorname(ax)\,dx= x\operatorname(ax)- \frac\operatorname\sqrt+C \int x\operatorname(ax)\,dx= \frac- \frac\sqrt+C \int x^2\operatorname(ax)\,dx= \frac- \frac\operatorname\sqrt- \frac\sqrt+C \int x^m\operatorname(ax)\,dx= \frac+ \frac\int\frac\,dx\quad(m\ne-1)


Inverse hyperbolic cosecant integration formulas

\int\operatorname(ax)\,dx= x\operatorname(ax)+ \frac\operatorname\sqrt+C \int x\operatorname(ax)\,dx= \frac+ \frac\sqrt+C \int x^2\operatorname(ax)\,dx= \frac- \frac\operatorname\sqrt+ \frac\sqrt+C \int x^m\operatorname(ax)\,dx= \frac+ \frac\int\frac\,dx\quad(m\ne-1) {{Lists of integrals Area functions Integrals of inverse hyperbolic functions