In
mathematics, a Lipschitz domain (or domain with Lipschitz boundary) is a
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
** Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
*Do ...
in
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean sp ...
whose boundary is "sufficiently regular" in the sense that it can be thought of as locally being the graph of a
Lipschitz continuous function
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exi ...
. The term is named after the
German
German(s) may refer to:
* Germany (of or related to)
**Germania (historical use)
* Germans, citizens of Germany, people of German ancestry, or native speakers of the German language
** For citizens of Germany, see also German nationality law
**Ger ...
mathematician
A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems.
Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
Rudolf Lipschitz
Rudolf Otto Sigismund Lipschitz (14 May 1832 – 7 October 1903) was a German mathematician who made contributions to mathematical analysis (where he gave his name to the Lipschitz continuity condition) and differential geometry, as well as numb ...
.
Definition
Let
. Let
be a
domain
Domain may refer to:
Mathematics
*Domain of a function, the set of input values for which the (total) function is defined
** Domain of definition of a partial function
**Natural domain of a partial function
**Domain of holomorphy of a function
*Do ...
of
and let
denote the
boundary
Boundary or Boundaries may refer to:
* Border, in political geography
Entertainment
* ''Boundaries'' (2016 film), a 2016 Canadian film
* ''Boundaries'' (2018 film), a 2018 American-Canadian road trip film
*Boundary (cricket), the edge of the pla ...
of
. Then
is called a Lipschitz domain if for every point
there exists a hyperplane
of dimension
through
, a Lipschitz-continuous function
over that hyperplane, and reals
and
such that
*
*
where
:
is a unit vector that is normal to
:
is the open ball of radius
,
:
In other words, at each point of its boundary,
is locally the set of points located above the graph of some Lipschitz function.
Generalization
A more general notion is that of weakly Lipschitz domains, which are domains whose boundary is locally flattable by a bilipschitz mapping. Lipschitz domains in the sense above are sometimes called strongly Lipschitz by contrast with weakly Lipschitz domains.
A domain
is weakly Lipschitz if for every point
there exists a radius
and a map
such that
*
is a
bijection;
*
and
are both Lipschitz continuous functions;
*
*
where
denotes the unit ball
in
and
:
:
A (strongly) Lipschitz domain is always a weakly Lipschitz domain but the converse is not true. An example of weakly Lipschitz domains that fails to be a strongly Lipschitz domain is given by the two-bricks domain
[Werner Licht, M]
"Smoothed Projections over Weakly Lipschitz Domains"
''arXiv
arXiv (pronounced " archive"—the X represents the Greek letter chi ⟨χ⟩) is an open-access repository of electronic preprints and postprints (known as e-prints) approved for posting after moderation, but not peer review. It consists o ...
'', 2016.
Applications of Lipschitz domains
Many of the
Sobolev embedding theorems require that the domain of study be a Lipschitz domain. Consequently, many
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.
The function is often thought of as an "unknown" to be solved for, similarly to ...
s and
variational problems are defined on Lipschitz domains.
References
* {{cite book , author=Dacorogna, B. , title=Introduction to the Calculus of Variations , publisher=Imperial College Press, London , year=2004 , isbn=1-86094-508-2
Geometry
Lipschitz maps
Sobolev spaces