Lipogenesis
   HOME

TheInfoList



OR:

In
biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
, lipogenesis is the conversion of
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s and
glycerol Glycerol () is a simple triol compound. It is a colorless, odorless, sweet-tasting, viscous liquid. The glycerol backbone is found in lipids known as glycerides. It is also widely used as a sweetener in the food industry and as a humectant in pha ...
into fats, or a metabolic process through which
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
is converted to
triglyceride A triglyceride (from '' tri-'' and '' glyceride''; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates ...
for storage in
fat In nutrition science, nutrition, biology, and chemistry, fat usually means any ester of fatty acids, or a mixture of such chemical compound, compounds, most commonly those that occur in living beings or in food. The term often refers specif ...
. Lipogenesis encompasses both
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
and triglyceride synthesis, with the latter being the process by which fatty acids are esterified to glycerol before being packaged into very-low-density lipoprotein (VLDL). Fatty acids are produced in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
of cells by repeatedly adding two-carbon units to acetyl-CoA. Triacylglycerol synthesis, on the other hand, occurs in the
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
membrane of cells by bonding three fatty acid molecules to a glycerol molecule. Both processes take place mainly in
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
and
adipose tissue Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, Blood vessel, vascular endothel ...
. Nevertheless, it also occurs to some extent in other tissues such as the gut and kidney. A review on lipogenesis in the brain was published in 2008 by Lopez and Vidal-Puig. After being packaged into VLDL in the liver, the resulting lipoprotein is then secreted directly into the blood for delivery to peripheral tissues.


Fatty acid synthesis

Fatty acid synthesis starts with
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
and builds up by the addition of two-carbon units. Fatty acid synthesis occurs in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
of cells while oxidative degradation occurs in the
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
. Many of the enzymes for the fatty acid synthesis are organized into a multienzyme complex called
fatty acid synthase Fatty acid synthase (FAS) is an enzyme that in humans is encoded by the ''FASN'' gene. Fatty acid synthase is a multi-enzyme protein that catalyzes fatty acid synthesis. It is not a single enzyme but a whole enzymatic system composed of two ide ...
. The major sites of fatty acid synthesis are
adipose tissue Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, Blood vessel, vascular endothel ...
and the
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
.


Triglyceride synthesis

Triglyceride A triglyceride (from '' tri-'' and '' glyceride''; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates ...
s are synthesized by esterification of
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
s to
glycerol Glycerol () is a simple triol compound. It is a colorless, odorless, sweet-tasting, viscous liquid. The glycerol backbone is found in lipids known as glycerides. It is also widely used as a sweetener in the food industry and as a humectant in pha ...
. Fatty acid esterification takes place in the
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
of cells by metabolic pathways in which acyl groups in fatty acyl-CoAs are transferred to the hydroxyl groups of glycerol-3-phosphate and diacylglycerol. Three fatty acid chains are bonded to each glycerol molecule. Each of the three -OH groups of the glycerol reacts with the carboxyl end of a fatty acid chain (-COOH). Water is eliminated and the remaining carbon atoms are linked by an -O- bond through dehydration synthesis. Both the
adipose tissue Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, Blood vessel, vascular endothel ...
and the
liver The liver is a major metabolic organ (anatomy), organ exclusively found in vertebrates, which performs many essential biological Function (biology), functions such as detoxification of the organism, and the Protein biosynthesis, synthesis of var ...
can synthesize triglycerides. Those produced by the liver are secreted from it in the form of very-low-density lipoproteins (VLDL). VLDL particles are secreted directly into blood, where they function to deliver the endogenously derived lipids to peripheral tissues.


Hormonal regulation

Insulin Insulin (, from Latin ''insula'', 'island') is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (''INS)'' gene. It is the main Anabolism, anabolic hormone of the body. It regulates the metabol ...
is a peptide hormone that is critical for managing the body's metabolism. Insulin is released by the pancreas when blood sugar levels rise, and it has many effects that broadly promote the absorption and storage of sugars, including lipogenesis. Insulin stimulates lipogenesis primarily by activating two enzymatic pathways. Pyruvate dehydrogenase (PDH), converts
pyruvate Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell. Pyruvic ...
into
acetyl-CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidation, o ...
. Acetyl-CoA carboxylase (ACC), converts acetyl-CoA produced by PDH into malonyl-CoA. Malonyl-CoA provides the two-carbon building blocks that are used to create larger fatty acids. Insulin stimulation of lipogenesis also occurs through the promotion of
glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
uptake by
adipose tissue Adipose tissue (also known as body fat or simply fat) is a loose connective tissue composed mostly of adipocytes. It also contains the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, Blood vessel, vascular endothel ...
. The increase in the uptake of glucose can occur through the use of glucose transporters directed to the plasma membrane or through the activation of lipogenic and glycolytic enzymes via covalent modification. The hormone has also been found to have long term effects on lipogenic gene expression. It is hypothesized that this effect occurs through the transcription factor SREBP-1, where the association of insulin and SREBP-1 lead to the gene expression of glucokinase. The interaction of glucose and lipogenic
gene expression Gene expression is the process (including its Regulation of gene expression, regulation) by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, proteins or non-coding RNA, ...
is assumed to be managed by the increasing concentration of an unknown glucose metabolite through the activity of glucokinase. Another hormone that may affect lipogenesis through the SREBP-1 pathway is
leptin Leptin (from Ancient Greek, Greek λεπτός ''leptos'', "thin" or "light" or "small"), also known as obese protein, is a protein hormone predominantly made by adipocytes (cells of adipose tissue). Its primary role is likely to regulate long ...
. It is involved in the process by limiting fat storage through inhibition of glucose intake and interfering with other adipose metabolic pathways. The inhibition of lipogenesis occurs through the down regulation of
fatty acid In chemistry, in particular in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated and unsaturated compounds#Organic chemistry, saturated or unsaturated. Most naturally occurring fatty acids have an ...
and
triglyceride A triglyceride (from '' tri-'' and '' glyceride''; also TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. Triglycerides are the main constituents of body fat in humans and other vertebrates ...
gene expression. Through the promotion of fatty acid oxidation and lipogenesis inhibition, leptin was found to control the release of stored glucose from adipose tissues. Other hormones that prevent the stimulation of lipogenesis in adipose cells are growth hormones (GH). Growth hormones result in loss of fat but stimulate muscle gain. One proposed mechanism for how the hormone works is that growth hormones affects insulin signaling thereby decreasing insulin sensitivity and in turn down regulating fatty acid synthase expression. Another proposed mechanism suggests that growth hormones may phosphorylate with STAT5A and STAT5B,
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription (genetics), transcription of genetics, genetic information from DNA to messenger RNA, by binding t ...
s that are a part of the Signal Transducer And Activator Of Transcription (STAT) family. There is also evidence suggesting that acylation stimulating protein (ASP) promotes the aggregation of triglycerides in adipose cells. This aggregation of triglycerides occurs through the increase in the synthesis of triglyceride production.


PDH dephosphorylation

Insulin stimulates the activity of pyruvate dehydrogenase phosphatase. The phosphatase removes the phosphate from pyruvate dehydrogenase activating it and allowing for conversion of pyruvate to acetyl-CoA. This mechanism leads to the increased rate of catalysis of this enzyme, so increases the levels of acetyl-CoA. Increased levels of acetyl-CoA will increase the flux through not only the fat synthesis pathway but also the citric acid cycle.


Acetyl-CoA carboxylase

Insulin affects ACC in a similar way to PDH. It leads to its dephosphorylation via activation of PP2A phosphatase whose activity results in the activation of the enzyme. Glucagon has an antagonistic effect and increases phosphorylation, deactivation, thereby inhibiting ACC and slowing fat synthesis. Affecting ACC affects the rate of acetyl-CoA conversion to malonyl-CoA. Increased malonyl-CoA level pushes the equilibrium over to increase production of fatty acids through biosynthesis. Long chain fatty acids are negative allosteric regulators of ACC and so when the cell has sufficient long chain fatty acids, they will eventually inhibit ACC activity and stop fatty acid synthesis. AMP and ATP concentrations of the cell act as a measure of the ATP needs of a cell. When ATP is depleted, there is a rise in 5'AMP. This rise activates AMP-activated protein kinase, which phosphorylates ACC and thereby inhibits fat synthesis. This is a useful way to ensure that glucose is not diverted down a storage pathway in times when energy levels are low. ACC is also activated by citrate. When there is abundant acetyl-CoA in the cell cytoplasm for fat synthesis, it proceeds at an appropriate rate.


Transcriptional regulation

SREBPs have been found to play a role with the nutritional or hormonal effects on the lipogenic gene expression. Overexpression of SREBP-1a or SREBP-1c in mouse liver cells results in the build-up of hepatic triglycerides and higher expression levels of lipogenic genes. Lipogenic gene expression in the liver via glucose and insulin is moderated by SREBP-1. The effect of glucose and insulin on the transcriptional factor can occur through various pathways; there is evidence suggesting that insulin promotes SREBP-1 mRNA expression in adipocytes and hepatocytes. It has also been suggested that the hormone increases transcriptional activation by SREBP-1 through MAP-kinase-dependent phosphorylation regardless of changes in the mRNA levels. Along with insulin glucose also have been shown to promote SREBP-1 activity and mRNA expression.


References

{{MetabolismMap Lipid metabolism