Namespaces are a feature of the
Linux kernel
The Linux kernel is a free and open-source, monolithic, modular, multitasking, Unix-like operating system kernel. It was originally authored in 1991 by Linus Torvalds for his i386-based PC, and it was soon adopted as the kernel for the GNU ...
that partitions kernel resources such that one set of
processes
A process is a series or set of activities that interact to produce a result; it may occur once-only or be recurrent or periodic.
Things called a process include:
Business and management
*Business process, activities that produce a specific se ...
sees one set of resources while another set of processes sees a different set of resources. The feature works by having the same namespace for a set of resources and processes, but those namespaces refer to distinct resources. Resources may exist in multiple spaces. Examples of such resources are process IDs, host-names, user IDs, file names, and some names associated with network access, and Inter-process communication.
Namespaces are a fundamental aspect of
containers in Linux.
The term "namespace" is often used for a type of namespace (e.g. process ID) as well as for a particular space of names.
A Linux system starts out with a single namespace of each type, used by all processes. Processes can create additional namespaces and also join different namespaces.
History
Linux namespaces were inspired by the wider namespace functionality used heavily throughout
Plan 9 from Bell Labs.
The Linux Namespaces originated in 2002 in the 2.4.19 kernel with work on the mount namespace kind. Additional namespaces were added beginning in 2006
and continuing into the future.
Adequate
containers support functionality was finished in kernel version 3.8 with the introduction of User namespaces.
Namespace kinds
Since
kernel
Kernel may refer to:
Computing
* Kernel (operating system), the central component of most operating systems
* Kernel (image processing), a matrix used for image convolution
* Compute kernel, in GPGPU programming
* Kernel method, in machine lea ...
version 5.6, there are 8 kinds of namespaces. Namespace functionality is the same across all kinds: each process is associated with a namespace and can only see or use the resources associated with that namespace, and descendant namespaces where applicable. This way each process (or process group thereof) can have a unique view on the resources. Which resource is isolated depends on the kind of namespace that has been created for a given process group.
Mount (mnt)
Mount namespaces control
mount points. Upon creation the mounts from the current mount namespace are copied to the new namespace, but mount points created afterwards do not propagate between namespaces (using shared subtrees, it is possible to propagate mount points between namespaces
).
The clone flag used to create a new namespace of this type is CLONE_NEWNS - short for "NEW NameSpace". This term is not descriptive (it does not tell which kind of namespace is to be created) because mount namespaces were the first kind of namespace and designers did not anticipate there being any others.
Process ID (pid)
The
PID namespace provides processes with an independent set of process IDs (PIDs) from other namespaces. PID namespaces are nested, meaning when a new process is created it will have a PID for each namespace from its current namespace up to the initial PID namespace. Hence the initial PID namespace is able to see all processes, albeit with different PIDs than other namespaces will see processes with.
The first process created in a PID namespace is assigned the process ID number 1 and receives most of the same special treatment as the normal
init
In Unix-based computer operating systems, init (short for ''initialization'') is the first process started during booting of the computer system. Init is a daemon process that continues running until the system is shut down. It is the direc ...
process, most notably that
orphaned processes within the namespace are attached to it. This also means that the termination of this PID 1 process will immediately terminate all processes in its PID namespace and any descendants.
Network (net)
Network namespaces virtualize the
network stack. On creation a network namespace contains only a
loopback
Loopback (also written loop-back) is the routing of electronic signals or digital data streams back to their source without intentional processing or modification. It is primarily a means of testing the communications infrastructure.
There are m ...
interface.
Each network interface (physical or virtual) is present in exactly 1 namespace and can be moved between namespaces.
Each namespace will have a private set of
IP addresses, its own
routing table
In computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with t ...
,
socket listing, connection tracking table,
firewall, and other network-related resources.
Destroying a network namespace destroys any virtual interfaces within it and moves any physical interfaces within it back to the initial network namespace.
Interprocess Communication (ipc)
IPC namespaces isolate processes from
SysV style inter-process communication. This prevents processes in different IPC namespaces from using, for example, the SHM family of functions to establish a range of shared memory between the two processes. Instead each process will be able to use the same identifiers for a shared memory region and produce two such distinct regions.
UTS
UTS (UNIX
Time-Sharing
In computing, time-sharing is the sharing of a computing resource among many users at the same time by means of multiprogramming and multi-tasking.DEC Timesharing (1965), by Peter Clark, The DEC Professional, Volume 1, Number 1
Its emergence ...
) namespaces allow a single system to appear to have different
host and
domain name
A domain name is a string that identifies a realm of administrative autonomy, authority or control within the Internet. Domain names are often used to identify services provided through the Internet, such as websites, email services and more. ...
s to different processes. "When a process creates a new UTS namespace ... the hostname and domain of the new UTS namespace are copied from the corresponding values in the caller's UTS namespace."
User ID (user)
User namespaces are a feature to provide both privilege isolation and user identification segregation across multiple sets of processes available since kernel 3.8. With administrative assistance it is possible to build a container with seeming administrative rights without actually giving elevated privileges to user processes. Like the PID namespace, user namespaces are nested and each new user namespace is considered to be a child of the user namespace that created it.
A user namespace contains a mapping table converting user IDs from the container's point of view to the system's point of view. This allows, for example, the
root
In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the sur ...
user to have user id 0 in the container but is actually treated as user id 1,400,000 by the system for ownership checks. A similar table is used for group id mappings and ownership checks.
To facilitate privilege isolation of administrative actions, each namespace type is considered owned by a user namespace based on the active user namespace at the moment of creation. A user with administrative privileges in the appropriate user namespace will be allowed to perform administrative actions within that other namespace type. For example, if a process has administrative permission to change the IP address of a network interface, it may do so as long as its own user namespace is the same as (or ancestor of) the user namespace that owns the network namespace. Hence the initial user namespace has administrative control over all namespace types in the system.
Control group (cgroup) Namespace
The
cgroup
cgroups (abbreviated from control groups) is a Linux kernel feature that limits, accounts for, and isolates the resource usage (CPU, memory, disk I/O, network, etc.) of a collection of processes.
Engineers at Google started the work on this ...
namespace type hides the identity of the
control group
In the design of experiments, hypotheses are applied to experimental units in a treatment group.
In comparative experiments, members of a control group receive a standard treatment, a placebo, or no treatment at all. There may be more than one t ...
of which process is a member. A process in such a namespace, checking which control group any process is part of, would see a path that is actually relative to the control group set at creation time, hiding its true control group position and identity. This namespace type has existed since March 2016 in Linux 4.6.
Time Namespace
The time namespace allows processes to see different system times in a way similar to the UTS namespace. It was proposed in 2018 and landed on Linux 5.6, which was released in March 2020.
Proposed namespaces
syslog namespace
The syslog namespace was proposed by Rui Xiang, an engineer at
Huawei
Huawei Technologies Co., Ltd. ( ; ) is a Chinese multinational technology corporation headquartered in Shenzhen, Guangdong, China. It designs, develops, produces and sells telecommunications equipment, consumer electronics and various smart ...
, but wasn't merged into the linux kernel.
systemd implemented a similar feature called “journal namespace” in February 2020.
Implementation details
The kernel assigns each process a symbolic link per namespace kind in
/proc//ns/
. The inode number pointed to by this symlink is the same for each process in this namespace. This uniquely identifies each namespace by the inode number pointed to by one of its symlinks.
Reading the symlink via readlink returns a string containing the namespace kind name and the inode number of the namespace.
Syscalls
Three syscalls can directly manipulate namespaces:
* clone, flags to specify which new namespace the new process should be migrated to.
* unshare, allows a process (or thread) to disassociate parts of its execution context that are currently being shared with other processes (or threads)
* setns, enters the namespace specified by a file descriptor.
Destruction
If a namespace is no longer referenced, it will be deleted, the handling of the contained resource depends on the namespace kind. Namespaces can be referenced in three ways:
# by a process belonging to the namespace
# by an open filedescriptor to the namespace's file (
/proc//ns/
)
# a bind mount of the namespace's file (
/proc//ns/
)
Adoption
Various container software use Linux namespaces in combination with
cgroups to isolate their processes, including
Docker and
LXC
Linux Containers (LXC) is an operating-system-level virtualization method for running multiple isolated Linux systems (containers) on a control host using a single Linux kernel.
The Linux kernel provides the cgroups functionality that allows l ...
.
Other applications, such as
Google Chrome
Google Chrome is a cross-platform web browser developed by Google. It was first released in 2008 for Microsoft Windows, built with free software components from Apple WebKit and Mozilla Firefox. Versions were later released for Linux, macO ...
make use of namespaces to isolate its own processes which are at risk from attack on the internet.
There is also an unshare wrapper in
util-linux. An example to its use is:
SHELL=/bin/sh unshare --map-root-user --fork --pid chroot "$" "$@"
References
External links
namespaces manpageLinux kernel Namespaces and cgroups by Rami RosenNamespaces and cgroups, the basis of Linux containers (including cgroups v2) - slides of a talk by Rami Rosen, Netdev 1.1, Seville, Spain (2016)Containers and Namespaces in the Linux Kernel by Kir Kolyshkin
{{Linux kernel
Interfaces of the Linux kernel
Linux kernel features
Operating system security
Virtualization software for Linux