Linear Matrix Inequalities
   HOME

TheInfoList



OR:

In
convex optimization Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems ...
, a linear matrix inequality (LMI) is an expression of the form : \operatorname(y):=A_0+y_1A_1+y_2A_2+\cdots+y_m A_m\succeq 0\, where * y= _i\,,~i\!=\!1,\dots, m/math> is a real vector, * A_0, A_1, A_2,\dots,A_m are n\times n
symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, Because equal matrices have equal dimensions, only square matrices can be symmetric. The entries of a symmetric matrix are symmetric with re ...
\mathbb^n, * B\succeq0 is a generalized inequality meaning B is a
positive semidefinite matrix In mathematics, a symmetric matrix M with real entries is positive-definite if the real number \mathbf^\mathsf M \mathbf is positive for every nonzero real column vector \mathbf, where \mathbf^\mathsf is the row vector transpose of \mathbf. M ...
belonging to the positive semidefinite cone \mathbb_+ in the subspace of symmetric matrices \mathbb{S}. This linear matrix inequality specifies a
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
constraint on y.


Applications

There are efficient numerical methods to determine whether an LMI is feasible (''e.g.'', whether there exists a vector ''y'' such that LMI(''y'') ≥ 0), or to solve a
convex optimization Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems ...
problem with LMI constraints. Many optimization problems in
control theory Control theory is a field of control engineering and applied mathematics that deals with the control system, control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the applic ...
,
system identification The field of system identification uses statistical methods to build mathematical models of dynamical systems from measured data. System identification also includes the optimal design#System identification and stochastic approximation, optimal de ...
and
signal processing Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomograph ...
can be formulated using LMIs. Also LMIs find application in Polynomial Sum-Of-Squares. The prototypical primal and dual semidefinite program is a minimization of a real linear function respectively subject to the primal and
dual Dual or Duals may refer to: Paired/two things * Dual (mathematics), a notion of paired concepts that mirror one another ** Dual (category theory), a formalization of mathematical duality *** see more cases in :Duality theories * Dual number, a nu ...
convex cone In linear algebra, a cone—sometimes called a linear cone to distinguish it from other sorts of cones—is a subset of a real vector space that is closed under positive scalar multiplication; that is, C is a cone if x\in C implies sx\in C for e ...
s governing this LMI.


Solving LMIs

A major breakthrough in convex optimization was the introduction of
interior-point method Interior-point methods (also referred to as barrier methods or IPMs) are algorithms for solving linear and non-linear convex optimization problems. IPMs combine two advantages of previously-known algorithms: * Theoretically, their run-time is po ...
s. These methods were developed in a series of papers and became of true interest in the context of LMI problems in the work of
Yurii Nesterov Yurii Nesterov is a Russian mathematician, an internationally recognized expert in convex optimization, especially in the development of efficient algorithms and numerical optimization analysis. He is currently a professor at the University of L ...
and
Arkadi Nemirovski Arkadi Nemirovski (; born March 14, 1947) is a professor at the H. Milton Stewart School of Industrial and Systems Engineering at the Georgia Institute of Technology. He has been a leader in continuous optimization and is best known for his wo ...
.


See also

*
Semidefinite programming Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of po ...
*
Spectrahedron In convex geometry, a spectrahedron is a shape that can be represented as a linear matrix inequality. Alternatively, the set of positive semidefinite matrices forms a convex cone in , and a spectrahedron is a shape that can be formed by interse ...
* Finsler's lemma


References

* Y. Nesterov and A. Nemirovsky, ''Interior Point Polynomial Methods in Convex Programming.'' SIAM, 1994.


External links

* S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan
Linear Matrix Inequalities in System and Control Theory
(book in pdf) * C. Scherer and S. Weiland
Linear Matrix Inequalities in Control
Convex optimization