HOME

TheInfoList



OR:

The linear ion trap (LIT) is a type of
ion trap mass spectrometer A quadrupole ion trap or paul trap is a type of ion trap that uses dynamic electric fields to trap charged particles. They are also called radio frequency (RF) traps or Paul traps in honor of Wolfgang Paul, who invented the device and shared the ...
. In a LIT,
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
are confined radially by a two-dimensional
radio frequency Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the uppe ...
(RF) field, and axially by stopping potentials applied to end
electrodes An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials dep ...
. LITs have high injection efficiencies and high ion storage capacities.


History

One of the first LITs was constructed in 1969, by Dierdre A. Church, who bent linear quadrupoles into closed circle and racetrack
geometries This is a list of geometry topics. Types, methodologies, and terminologies of geometry. * Absolute geometry * Affine geometry * Algebraic geometry * Analytic geometry * Archimedes' use of infinitesimals * Birational geometry * Complex geomet ...
and demonstrated storage of 3 He+ and H+ ions for several minutes. Earlier, Drees and Paul described a circular quadrupole. However, it was used to produce and confine a plasma, not to store ions. In 1989, Prestage, Dick, and Malecki described that ions could be trapped in the linear quadrupole trap system to enhance ion-molecule reactions, thus it can be used to study
spectroscopy Spectroscopy is the field of study that measures and interprets the electromagnetic spectra that result from the interaction between electromagnetic radiation and matter as a function of the wavelength or frequency of the radiation. Matter ...
of stored ions.


How it works

The LIT uses a set of quadrupole rods to confine
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conve ...
radially and a static electrical potential on the end
electrodes An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). Electrodes are essential parts of batteries that can consist of a variety of materials dep ...
to confine the ions axially. The LIT can be used as a mass filter or as a trap by creating a potential well for the ions along the axis of the trap. The mass of trapped ions may be determined if the m/z lies between defined
parameters A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
. Advantages of the LIT design are high ion storage capacity, high scan rate, and simplicity of construction. Although quadrupole rod alignment is critical, adding a quality control constraint to their production, this constraint is additionally present in the machining requirements of the 3D trap.


Selective mode and scanning mode

Ions are either injected into or created within the interior of the LIT. They are confined by application of appropriate RF and DC voltages with their final position maintained within the center section of the LIT. The RF
voltage Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge t ...
is adjusted and multi-frequency resonance ejection
waveforms In electronics, acoustics, and related fields, the waveform of a signal is the shape of its graph as a function of time, independent of its time and magnitude scales and of any displacement in time.David Crecraft, David Gorham, ''Electronic ...
are applied to the trap to eliminate all but the desired ions in preparation for subsequent
fragmentation Fragmentation or fragmented may refer to: Computers * Fragmentation (computing), a phenomenon of computer storage * File system fragmentation, the tendency of a file system to lay out the contents of files non-continuously * Fragmented distributi ...
and mass analysis. The voltages applied to the ion trap are adjusted to stabilize the selected ions and to allow for collisional cooling in preparation for excitation. The energy of the selected ions is increased by application of a supplemental resonance excitation voltage applied to all segments of two rods located on the X-axis. This increase of energy causes
dissociation Dissociation, in the wide sense of the word, is an act of disuniting or separating a complex object into parts. Dissociation may also refer to: * Dissociation (chemistry), general process in which molecules or ionic compounds (complexes, or salts) ...
of the selected ions due to collisions with damping gas. The product ions formed are retained in the trapping field. Scanning the contents of the trap to produce a
mass spectrum A mass spectrum is a histogram plot of intensity vs. '' mass-to-charge ratio'' (''m/z'') in a chemical sample, usually acquired using an instrument called a ''mass spectrometer''. Not all mass spectra of a given substance are the same; for examp ...
is accomplished by linearly increasing the RF voltage applied to all sections of the trap and utilizing a supplemental resonance ejection voltage. These changes sequentially move ions from within the stability diagram to a position where they become unstable in the x-direction and leave the trapping field for detection. Ions are accelerated into two high voltage
dynode A dynode is an electrode in a vacuum tube that serves as an electron multiplier through secondary emission. The first tube to incorporate a dynode was the dynatron, an ancestor of the magnetron, which used a single dynode.Albert W. Hull, E. F. He ...
s where ions produce
secondary electrons Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the ''primary'' radiation). This radiation can be in the form of ions, electrons, or photons with suffici ...
. This signal is subsequently amplified by two
electron multiplier An electron multiplier is a vacuum-tube structure that multiplies incident charges. In a process called secondary emission, a single electron can, when bombarded on secondary-emissive material, induce emission of roughly 1 to 3 electrons. If an ele ...
s and the
analog signal An analog signal or analogue signal (see spelling differences) is any continuous signal representing some other quantity, i.e., ''analogous'' to another quantity. For example, in an analog audio signal, the instantaneous signal voltage vari ...
s are then integrated together and digitized.


Combination with other mass analyzers

LITs can be used as stand alone mass analyzers, and they can be combined with other mass analyzers, such as 3D Paul ion traps, TOF mass spectrometers, FTMS, and other kind of mass analyzers.


Linear traps and 3D trap

3D ion trap (or Paul trap) mass spectrometers are widely used but have limitations. With a continuous source, such as one utilizing
electrospray ionization Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules becau ...
(ESI), ions generated while the 3D trap is processing other ions are not used, thereby limiting the
duty cycle A duty cycle or power cycle is the fraction of one period in which a signal or system is active. Duty cycle is commonly expressed as a percentage or a ratio. A period is the time it takes for a signal to complete an on-and-off cycle. As a formu ...
. Furthermore, the total number of ions that can be stored in a 3D ion trap is limited by
space charge Space charge is an interpretation of a collection of electric charges in which excess electric charge is treated as a continuum of charge distributed over a region of space (either a volume or an area) rather than distinct point-like charges. Thi ...
effects. Combining a linear trap with a 3D trap can help overcome these limitations. Recently, Hardman and Makarov have described the use of a linear quadrupole trap to store ions formed by ESI for injection into an orbitrap mass analyzer. Ions passed through an orifice and skimmer, a quadrupole ion guide for ion cooling and then entered the quadrupole storage trap. The quadrupole trap has two rod sets; short rods near the exit were biased so that most ions accumulated in this region. Because the orbitrap requires that ions be injected in very short pulses,
kilovolt The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Defi ...
ion extraction potentials were applied to the exit aperture. Flight times of ions to the orbitrap were mass dependent, but for a given mass, ions were injected in bunches less than 100 nanoseconds wide (fwhm).


Linear traps and TOF

A TOF mass spectrometer can also have a low-duty cycle when coupled with a continuous ion source. Combining an ion trap with a TOF mass analyzer can improve the duty cycle. Both 3D and linear traps have been combined with TOF mass analyzers. A trap can also add MSn capabilities to the system.


Linear trap and FTICR

Linear traps can be used to improve the performance of
FT-ICR Fourier-transform ion cyclotron resonance mass spectrometry is a type of mass analyzer (or mass spectrometer) for determining the mass-to-charge ratio (''m''/''z'') of ions based on the cyclotron frequency of the ions in a fixed magnetic field. T ...
(or FTMS) systems. As with 3D ion traps, the duty cycle can be increased to nearly 100% if ions are accumulated in a linear trap, while the FTMS performs other functions. Unwanted ions that can cause space charge problems in the FTMS can be ejected in the linear trap to improve the resolution, sensitivity, and dynamic range of the system, although the system parameters used to optimize such signal characteristics co-vary with one another.


Linear trap and triple quadrupole

The combination of triple quadrupole MS with LIT technology in the form of an instrument of configuration QqLIT, using axial ejection, is particularly interesting, because this instrument retains the classical triple quadrupole scan functions such as
selected reaction monitoring Selected reaction monitoring (SRM), also called Multiple reaction monitoring, (MRM), is a method used in tandem mass spectrometry in which an ion of a particular mass is selected in the first stage of a tandem mass spectrometer and an ion product ...
(SRM), product ion (PI), neutral loss (NL) and precursor ion (PC) while also providing access to sensitive ion trap experiments. For small molecules, quantitative and qualitative analysis can be performed using the same instrument. In addition, for
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
analysis, the enhanced multiply charged (EMC) scan allows an increase in selectivity, while the time-delayed fragmentation (TDF) scan provides additional structural information. In the case of the QqLIT, the uniqueness of the instrument is that the same mass analyzer Q3 can be run in two different modes. This allows very powerful scan combinations when performing information-dependent data acquisition.


References

{{reflist Mass spectrometry Particle traps