Lightspeed China Partners
   HOME

TheInfoList



OR:

The speed of light in
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
, commonly denoted , is a universal
physical constant A physical constant, sometimes fundamental physical constant or universal constant, is a physical quantity that cannot be explained by a theory and therefore must be measured experimentally. It is distinct from a mathematical constant, which has a ...
exactly equal to ). It is exact because, by international agreement, a
metre The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of of ...
is defined as the length of the path travelled by
light Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
in vacuum during a time interval of
second The second (symbol: s) is a unit of time derived from the division of the day first into 24 hours, then to 60 minutes, and finally to 60 seconds each (24 × 60 × 60 = 86400). The current and formal definition in the International System of U ...
. The speed of light is the same for all observers, no matter their relative velocity. It is the upper limit for the speed at which
information Information is an Abstraction, abstract concept that refers to something which has the power Communication, to inform. At the most fundamental level, it pertains to the Interpretation (philosophy), interpretation (perhaps Interpretation (log ...
,
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic pa ...
, or
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
can travel through
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
. All forms of
electromagnetic radiation In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, including
visible light Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
, travel at the speed of light. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and sensitive measurements, their finite speed has noticeable effects. Much
starlight Starlight is the light emitted by stars. It typically refers to visible electromagnetic radiation from stars other than the Sun, observable from Earth at night, although a component of starlight is observable from Earth during daytime. Sunlig ...
viewed on
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant
space probe Uncrewed spacecraft or robotic spacecraft are spacecraft without people on board. Uncrewed spacecraft may have varying levels of autonomy from human input, such as remote control, or remote guidance. They may also be autonomous, in which th ...
s, it can take hours for signals to travel. In
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computer, computing machinery. It includes the study and experimentation of algorithmic processes, and the development of both computer hardware, hardware and softw ...
, the speed of light fixes the ultimate minimum communication delay. The speed of light can be used in
time of flight Time of flight (ToF) is the measurement of the time taken by an object, particle or wave (be it acoustic, electromagnetic, etc.) to travel a distance through a medium. This information can then be used to measure velocity or path length, or as a w ...
measurements to measure large distances to extremely high precision.
Ole Rømer Ole Christensen Rømer (; 25 September 1644 – 19 September 1710) was a Danes, Danish astronomer who, in 1676, first demonstrated that light travels at a finite speed. Rømer also invented the modern thermometer showing the temperature between ...
first demonstrated that light does not travel instantaneously by studying the apparent motion of
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
's moon Io. In an 1865
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, Textile, rags, poaceae, grasses, Feces#Other uses, herbivore dung, or other vegetable sources in water. Once the water is dra ...
,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
proposed that light was an
electromagnetic wave In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ...
and, therefore, travelled at speed .
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
postulated that the speed of light with respect to any
inertial frame of reference In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
is a constant and is independent of the motion of the light source. He explored the consequences of that postulate by deriving the
theory of relativity The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical ph ...
and, so showed that the parameter had relevance outside of the context of light and electromagnetism.
Massless particle In particle physics, a massless particle is an elementary particle whose invariant mass is zero. At present the only confirmed massless particle is the photon. Other particles and quasiparticles Standard Model gauge bosons The photon (carrier of ...
s and
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
perturbations, such as
gravitational wave Gravitational waves are oscillations of the gravitational field that Wave propagation, travel through space at the speed of light; they are generated by the relative motion of gravity, gravitating masses. They were proposed by Oliver Heaviside i ...
s, also travel at speed in vacuum. Such particles and waves travel at regardless of the motion of the source or the inertial reference frame of the
observer An observer is one who engages in observation or in watching an experiment. Observer may also refer to: Fiction * ''Observer'' (novel), a 2023 science fiction novel by Robert Lanza and Nancy Kress * ''Observer'' (video game), a cyberpunk horr ...
. Particles with nonzero
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
can be accelerated to approach but can never reach it, regardless of the frame of reference in which their speed is measured. In the
theory of relativity The theory of relativity usually encompasses two interrelated physics theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical ph ...
, interrelates
space and time In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing ...
and appears in the famous
mass–energy equivalence In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame. The two differ only by a multiplicative constant and the units of measurement. The principle is described by the physicist Albert Einstei ...
, . In some cases, objects or waves may appear to travel
faster than light Faster-than-light (superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light in vacuum (). The special theory of relativity implies that only particles with zero ...
. The
expansion of the universe The expansion of the universe is the increase in proper length, distance between Gravitational binding energy, gravitationally unbound parts of the observable universe with time. It is an intrinsic and extrinsic properties (philosophy), intrins ...
is understood to exceed the speed of light beyond a certain boundary. The speed at which light propagates through
transparent materials In the field of optics, transparency (also called pellucidity or diaphaneity) is the physical property of allowing light to pass through the material without appreciable light scattering by particles, scattering of light. On a macroscopic scale ...
, such as glass or air, is less than ; similarly, the speed of
electromagnetic waves In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength, ran ...
in wire cables is slower than . The ratio between and the speed at which light travels in a material is called the
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
of the material (). For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at ; the
refractive index of air The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weathe ...
for visible light is about 1.0003, so the speed of light in air is about slower than .


Numerical value, notation, and units

The speed of light in vacuum is usually denoted by a lowercase . The origin of the letter choice is unclear, with guesses including "c" for "constant" or the Latin (meaning 'swiftness, celerity'). The "c" was used for "celerity" meaning a velocity in books by
Leonhard Euler Leonhard Euler ( ; ; ; 15 April 170718 September 1783) was a Swiss polymath who was active as a mathematician, physicist, astronomer, logician, geographer, and engineer. He founded the studies of graph theory and topology and made influential ...
and others, but this velocity was not specifically for light;
Isaac Asimov Isaac Asimov ( ;  – April 6, 1992) was an Russian-born American writer and professor of biochemistry at Boston University. During his lifetime, Asimov was considered one of the "Big Three" science fiction writers, along with Robert A. H ...
wrote a popular science article, "C for Celeritas", but did not explain the origin. In 1856,
Wilhelm Eduard Weber Wilhelm Eduard Weber ( ; ; 24 October 1804 – 23 June 1891) was a German physicist and, together with Carl Friedrich Gauss, inventor of the first electromagnetic telegraph. Biography Early years Weber was born in Schlossstrasse in Witte ...
and
Rudolf Kohlrausch Rudolf Hermann Arndt Kohlrausch (November 6, 1809 in Göttingen – March 8, 1858 in Erlangen) was a German physicist. Biography He was a native of Göttingen, the son of the Royal Hanovarian director general of schools Friedrich Kohlrausch. He ...
had used for a different constant that was later shown to equal times the speed of light in vacuum. Historically, the symbol ''V'' was used as an alternative symbol for the speed of light, introduced by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism an ...
in 1865. In 1903,
Max Abraham Max Abraham (; 26 March 1875 – 16 November 1922) was a German physicist known for his work on electromagnetism and his opposition to the theory of relativity. Biography Abraham was born in Danzig, Imperial Germany (now Gdańsk in Poland) ...
used with its modern meaning in a widely read textbook on electromagnetism.
Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
used ''V'' in his original German-language papers on special relativity in 1905, but in 1907 he switched to , which by then had become the standard symbol for the speed of light. "The origins of the letter c being used for the speed of light can be traced back to a paper of 1856 by Weber and Kohlrausch ..Weber apparently meant c to stand for 'constant' in his force law, but there is evidence that physicists such as Lorentz and Einstein were accustomed to a common convention that c could be used as a variable for velocity. This usage can be traced back to the classic Latin texts in which c stood for 'celeritas', meaning 'speed'." Sometimes is used for the speed of waves in any material medium, and 0 for the speed of light in vacuum.See, for example: * * * * This subscripted notation, which is endorsed in official SI literature, has the same form as related electromagnetic constants: namely, ''μ''0 for the
vacuum permeability The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum'', ''magnetic constant'') is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally ...
or magnetic constant, ''ε''0 for the
vacuum permittivity Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ...
or electric constant, and ''Z''0 for the
impedance of free space In electromagnetism, the impedance of free space, , is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, Z_0 = \frac, where is the electric fie ...
. This article uses exclusively for the speed of light in vacuum.


Use in unit systems

Since 1983, the constant has been defined in the
International System of Units The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official s ...
(SI) as ''exactly'' ; this relationship is used to define the metre as exactly the distance that light travels in vacuum in of a second. The second is, in turn, defined to be the length of time occupied by of the radiation emitted by a
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
-133
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
in a transition between two specified energy states. By using the value of , as well as an accurate measurement of the second, one can establish a standard for the metre.See, for example: * * * The particular value chosen for the speed of light provided a more accurate definition of the metre that still agreed as much as possible with the definition used before 1983. As a dimensional physical constant, the numerical value of is different for different unit systems. For example, in
imperial units The imperial system of units, imperial system or imperial units (also known as British Imperial or Exchequer Standards of 1826) is the system of units first defined in the British Weights and Measures Act 1824 and continued to be developed thr ...
, the speed of light is approximately miles per second, or roughly 1
foot The foot (: feet) is an anatomical structure found in many vertebrates. It is the terminal portion of a limb which bears weight and allows locomotion. In many animals with feet, the foot is an organ at the terminal part of the leg made up o ...
per nanosecond. In branches of physics in which appears often, such as in relativity, it is common to use systems of
natural units In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units. For example, the speed of light may be set to 1, and it may then be omitted, equa ...
of measurement or the
geometrized unit system A geometrized unit system or geometrodynamic unit system is a system of natural units in which the base physical units are chosen so that the speed of light in vacuum, ''c'', and the gravitational constant, ''G'', are set equal to unity. : c = 1 \ ...
where . Using these units, does not appear explicitly because multiplication or division by1 does not affect the result. Its unit of
light-second The light-second is a unit of length useful in astronomy, telecommunications Telecommunication, often used in its plural form or abbreviated as telecom, is the transmission of information over a distance using electronic means, typically t ...
per second is still relevant, even if omitted.


Fundamental role in physics

The speed at which light waves propagate in vacuum is independent both of the motion of the wave source and of the
inertial frame of reference In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative ...
of the observer. This invariance of the speed of light was postulated by Einstein in 1905, after being motivated by
Maxwell's theory of electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interacti ...
and the lack of evidence for motion against the
luminiferous aether Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
. It has since been consistently confirmed by experiments such as the
Michelson–Morley experiment The Michelson–Morley experiment was an attempt to measure the motion of the Earth relative to the luminiferous aether, a supposed medium permeating space that was thought to be the carrier of light waves. The experiment was performed between ...
and
Kennedy–Thorndike experiment The Kennedy–Thorndike experiment, first conducted in 1932 by Roy J. Kennedy and Edward M. Thorndike, is a modified form of the Michelson–Morley experimental procedure, testing special relativity. The modification is to make one arm of the clas ...
. The
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, "On the Electrodynamics of Moving Bodies", the theory is presen ...
explores the consequences of this invariance of with the assumption that the laws of physics are the same in all inertial frames of reference. One consequence is that is the speed at which all massless particles and waves, including light, must travel in vacuum. Special relativity has many counterintuitive and experimentally verified implications. These include the equivalence of mass and energy (),
length contraction Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald ...
(moving objects shorten),
Terrell rotation Terrell rotation or the Terrell effect is the visual distortion that a passing object would appear to undergo, according to the special theory of relativity, if it were travelling at a significant fraction of the speed of light. This behaviour was ...
(apparent rotation), and
time dilation Time dilation is the difference in elapsed time as measured by two clocks, either because of a relative velocity between them (special relativity), or a difference in gravitational potential between their locations (general relativity). When unsp ...
(moving clocks run more slowly). The factor  by which lengths contract and times dilate is known as the
Lorentz factor The Lorentz factor or Lorentz term (also known as the gamma factor) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in sev ...
and is given by , where is the speed of the object. The difference of from1 is negligible for speeds much slower than , such as most everyday speedsin which case special relativity is closely approximated by
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his ''Dialogue Concerning the Two Chief World Systems'' using t ...
but it increases at relativistic speeds and diverges to infinity as approaches . For example, a time dilation factor of occurs at a relative velocity of 86.6% of the speed of light (). Similarly, a time dilation factor of occurs at 99.5% the speed of light (). The results of special relativity can be summarized by treating space and time as a unified structure known as
spacetime In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualiz ...
(with  relating the units of space and time), and requiring that physical theories satisfy a special
symmetry Symmetry () in everyday life refers to a sense of harmonious and beautiful proportion and balance. In mathematics, the term has a more precise definition and is usually used to refer to an object that is Invariant (mathematics), invariant und ...
called
Lorentz invariance In a relativistic theory of physics, a Lorentz scalar is a scalar expression whose value is invariant under any Lorentz transformation. A Lorentz scalar may be generated from, e.g., the scalar product of vectors, or by contracting tensors. While ...
, whose mathematical formulation contains the parameter . Lorentz invariance is an almost universal assumption for modern physical theories, such as
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
,
quantum chromodynamics In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of ...
, the
Standard Model The Standard Model of particle physics is the Scientific theory, theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions – excluding gravity) in the unive ...
of
particle physics Particle physics or high-energy physics is the study of Elementary particle, fundamental particles and fundamental interaction, forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the s ...
, and
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
. As such, the parameter  is ubiquitous in modern physics, appearing in many contexts that are unrelated to light. For example, general relativity predicts that  is also the
speed of gravity In classical theories of gravitation, the changes in a gravitational field propagate. A change in the distribution of energy and momentum of matter results in subsequent alteration, at a distance, of the gravitational field which it produces. In ...
and of
gravitational waves Gravitational waves are oscillations of the gravitational field that travel through space at the speed of light; they are generated by the relative motion of gravitating masses. They were proposed by Oliver Heaviside in 1893 and then later by H ...
, and observations of gravitational waves have been consistent with this prediction. In
non-inertial frame A non-inertial reference frame (also known as an accelerated reference frame) is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-z ...
s of reference (gravitationally curved spacetime or
accelerated reference frame A non-inertial reference frame (also known as an accelerated reference frame) is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-z ...
s), the speed of light is constant and equal to , but the speed of light can differ from  when measured from a remote frame of reference, depending on how measurements are extrapolated to the region. It is generally assumed that fundamental constants such as  have the same value throughout spacetime, meaning that they do not depend on location and do not vary with time. However, it has been suggested in various theories that the speed of light may have changed over time. No conclusive evidence for such changes has been found, but they remain the subject of ongoing research. It is generally assumed that the two-way speed of light is
isotropic In physics and geometry, isotropy () is uniformity in all orientations. Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence '' anisotropy''. ''Anisotropy'' is also ...
, meaning that it has the same value regardless of the direction in which it is measured. Observations of the emissions from nuclear
energy level A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s as a function of the orientation of the emitting nuclei in a magnetic field (see
Hughes–Drever experiment Hughes–Drever experiments (also clock comparison-, clock anisotropy-, mass isotropy-, or energy isotropy experiments) are Spectroscopy, spectroscopic tests of the isotropy of mass and space. Although originally conceived of as a test of Mach's pr ...
), and of rotating
optical resonator An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers, ...
s (see Resonator experiments) have put stringent limits on the possible two-way
anisotropy Anisotropy () is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit ve ...
.


Upper limit on speeds

An object with
rest mass The invariant mass, rest mass, intrinsic mass, proper mass, or in the case of bound systems simply mass, is the portion of the total mass of an object or system of objects that is independent of the overall motion of the system. More precisely, ...
and speed relative to a laboratory has
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
with respect to that lab, where is the Lorentz factor defined above. The factor approaches infinity as approaches , and it would take an infinite amount of energy to accelerate an object with mass to the speed of light. The speed of light is the upper limit for the speeds of objects with positive rest mass. Analysis of individual photons confirm that information cannot travel faster than the speed of light. This is experimentally established in many
tests of relativistic energy and momentum Tests of relativistic energy and momentum are aimed at measuring the relativistic expressions for energy, momentum, and mass. According to special relativity, the properties of particles moving approximately at the speed of light significantly dev ...
. More generally, it is impossible for signals or energy to travel faster than . One argument for this is known as causality. If the spatial distance between two events A and B is greater than the time interval between them multiplied by  then there are frames of reference in which A precedes B, others in which B precedes A, and others in which they are simultaneous. As a result, if something were travelling faster than  relative to an inertial frame of reference, it would be travelling backwards in time relative to another frame, and causality would be violated. In such a frame of reference, an "effect" could be observed before its "cause". Such a violation of causality has never been recorded, and would lead to
paradox A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictor ...
es such as the
tachyonic antitelephone A tachyonic antitelephone is a hypothetical device in theoretical physics that could be used to send signals into one's own past. Albert Einstein in 1907 presented a thought experiment of how faster-than-light signals can lead to a paradox of caus ...
. In some theoretical treatments, the Scharnhorst effect allows signals to travel faster than , by one part in 1036. However other approaches to the same physical set up show no such effect. and it appears the special conditions in which this effect might occur would prevent one from using it to violate causality.


One-way speed of light

It is only possible to verify experimentally that the two-way speed of light (for example, from a source to a mirror and back again) is frame-independent, because it is impossible to measure the one-way speed of light (for example, from a source to a distant detector) without some convention as to how clocks at the source and at the detector should be synchronized. By adopting Einstein synchronization for the clocks, the one-way speed of light becomes equal to the two-way speed of light by definition.


Faster-than-light observations and experiments

There are situations in which it may seem that matter, energy, or information-carrying signal travels at speeds greater than , but they do not. For example, as is discussed in the #In a medium, propagation of light in a medium section below, many wave velocities can exceed . The phase velocity of X-rays through most glasses can routinely exceed , but phase velocity does not determine the velocity at which waves convey information. If a laser beam is swept quickly across a distant object, the spot of light can move faster than , although the initial movement of the spot is delayed because of the time it takes light to get to the distant object at the speed . However, the only physical entities that are moving are the laser and its emitted light, which travels at the speed  from the laser to the various positions of the spot. Similarly, a shadow projected onto a distant object can be made to move faster than , after a delay in time. In neither case does any matter, energy, or information travel faster than light. The rate of change in the distance between two objects in a frame of reference with respect to which both are moving (their Faster-than-light#Closing speeds, closing speed) may have a value in excess of . However, this does not represent the speed of any single object as measured in a single inertial frame. Certain quantum effects appear to be transmitted instantaneously and therefore faster than , as in the EPR paradox. An example involves the quantum states of two particles that can be quantum entanglement, entangled. Until either of the particles is observed, they exist in a quantum superposition, superposition of two quantum states. If the particles are separated and one particle's quantum state is observed, the other particle's quantum state is determined instantaneously. However, it is impossible to control which quantum state the first particle will take on when it is observed, so information cannot be transmitted in this manner. Another quantum effect that predicts the occurrence of faster-than-light speeds is called the Hartman effect: under certain conditions the time needed for a virtual particle to quantum tunnelling, tunnel through a barrier is constant, regardless of the thickness of the barrier. This could result in a virtual particle crossing a large gap faster than light. However, no information can be sent using this effect. So-called superluminal motion is seen in certain astronomical objects, such as the relativistic jets of radio galaxy, radio galaxies and quasars. However, these jets are not moving at speeds in excess of the speed of light: the apparent superluminal motion is a graphical projection, projection effect caused by objects moving near the speed of light and approaching Earth at a small angle to the line of sight: since the light which was emitted when the jet was farther away took longer to reach the Earth, the time between two successive observations corresponds to a longer time between the instants at which the light rays were emitted. A 2011 experiment where Faster-than-light neutrino anomaly, neutrinos were observed to travel faster than light turned out to be due to experimental error. In models of the expansion of the universe, expanding universe, the farther galaxies are from each other, the faster they drift apart. For example, galaxies far away from Earth are inferred to be moving away from the Earth with speeds proportional to their distances. Beyond a boundary called the Hubble sphere, the rate at which their distance from Earth increases becomes greater than the speed of light. These recession rates, defined as the increase in comoving and proper distances, proper distance per cosmological time, are not velocities in a relativistic sense. Faster-than-light cosmological recession speeds are only a coordinate conditions, coordinate artifact.


Propagation of light

In classical physics, light is described as a type of electromagnetic wave. The classical behaviour of the electromagnetic field is described by Maxwell's equations, which predict that the speed ''c'' with which electromagnetic waves (such as light) propagate in vacuum is related to the distributed capacitance and inductance of vacuum, otherwise respectively known as the electric constant ''ε''0 and the magnetic constant ''μ''0, by the equation : c = \frac. In modern quantum physics, the electromagnetic field is described by the theory of
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the Theory of relativity, relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quant ...
(QED). In this theory, light is described by the fundamental excitations (or quanta) of the electromagnetic field, called photons. In QED, photons are massless particles and thus, according to special relativity, they travel at the speed of light in vacuum. Extensions of QED in which the photon has a mass have been considered. In such a theory, its speed would depend on its frequency, and the invariant speed ''c'' of special relativity would then be the upper limit of the speed of light in vacuum. No variation of the speed of light with frequency has been observed in rigorous testing, putting stringent limits on the mass of the photon. The limit obtained depends on the model used: if the massive photon is described by Proca action, Proca theory, the experimental upper bound for its mass is about 10−57 grams; if photon mass is generated by a Higgs mechanism, the experimental upper limit is less sharp,   (roughly 2 × 10−47 g). Another reason for the speed of light to vary with its frequency would be the failure of special relativity to apply to arbitrarily small scales, as predicted by some proposed theories of quantum gravity. In 2009, the observation of gamma-ray burst GRB 090510 found no evidence for a dependence of photon speed on energy, supporting tight constraints in specific models of spacetime quantization on how this speed is affected by photon energy for energies approaching the Planck scale.


In a medium

In a medium, light usually does not propagate at a speed equal to ''c''; further, different types of light wave will travel at different speeds. The speed at which the individual crests and troughs of a plane wave (a wave filling the whole space, with only one frequency) propagate is called the phase velocity ''v''p. A physical signal with a finite extent (a pulse of light) travels at a different speed. The overall Envelope (waves), envelope of the pulse travels at the group velocity ''v''g, and its earliest part travels at the front velocity ''v''f. The phase velocity is important in determining how a light wave travels through a material or from one material to another. It is often represented in terms of a ''refractive index''. The refractive index of a material is defined as the ratio of ''c'' to the phase velocity ''v''p in the material: larger indices of refraction indicate lower speeds. The refractive index of a material may depend on the light's frequency, intensity, polarization (waves), polarization, or direction of propagation; in many cases, though, it can be treated as a material-dependent constant. The
refractive index of air The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weathe ...
is approximately 1.0003. Denser media, such as Optical properties of water and ice, water, glass, and Material properties of diamond#Optical properties, diamond, have refractive indexes of around 1.3, 1.5 and 2.4, respectively, for visible light. In exotic materials like Bose–Einstein condensates near absolute zero, the effective speed of light may be only a few metres per second. However, this represents absorption and re-radiation delay between atoms, as do all slower-than-''c'' speeds in material substances. As an extreme example of light "slowing" in matter, two independent teams of physicists claimed to bring light to a "complete standstill" by passing it through a Bose–Einstein condensate of the element rubidium. The popular description of light being "stopped" in these experiments refers only to light being stored in the excited states of atoms, then re-emitted at an arbitrarily later time, as stimulated by a second laser pulse. During the time it had "stopped", it had ceased to be light. This type of behaviour is generally microscopically true of all transparent media which "slow" the speed of light. In transparent materials, the refractive index generally is greater than 1, meaning that the phase velocity is less than ''c''. In other materials, it is possible for the refractive index to become smaller than1 for some frequencies; in some exotic materials it is even possible for the index of refraction to become negative. The requirement that causality is not violated implies that the real and imaginary parts of the dielectric constant of any material, corresponding respectively to the index of refraction and to the attenuation coefficient, are linked by the Kramers–Kronig relations. In practical terms, this means that in a material with refractive index less than 1, the wave will be absorbed quickly. A pulse with different group and phase velocities (which occurs if the phase velocity is not the same for all the frequencies of the pulse) smears out over time, a process known as Dispersion (optics), dispersion. Certain materials have an exceptionally low (or even zero) group velocity for light waves, a phenomenon called slow light. The opposite, group velocities exceeding ''c'', was proposed theoretically in 1993 and achieved experimentally in 2000. It should even be possible for the group velocity to become infinite or negative, with pulses travelling instantaneously or backwards in time. None of these options allow information to be transmitted faster than ''c''. It is impossible to transmit information with a light pulse any faster than the speed of the earliest part of the pulse (the front velocity). It can be shown that this is (under certain assumptions) always equal to ''c''. It is possible for a particle to travel through a medium faster than the phase velocity of light in that medium (but still slower than ''c''). When a charged particle does that in a dielectric material, the electromagnetic equivalent of a shock wave, known as Cherenkov radiation, is emitted.


Practical effects of finiteness

The speed of light is of relevance to telecommunications: the one-way and round-trip delay time are greater than zero. This applies from small to astronomical scales. On the other hand, some techniques depend on the finite speed of light, for example in distance measurements.


Small scales

In computers, the speed of light imposes a limit on how quickly data can be sent between central processing unit, processors. If a processor operates at 1gigahertz, a signal can travel only a maximum of about in a single clock cycle – in practice, this distance is even shorter since the printed circuit board refracts and slows down signals. Processors must therefore be placed close to each other, as well as Computer memory, memory chips, to minimize communication latencies, and care must be exercised when routing wires between them to ensure signal integrity. If clock frequencies continue to increase, the speed of light may eventually become a limiting factor for the internal design of single integrated circuit, chips.


Large distances on Earth

Given that the equatorial circumference of the Earth is about and that ''c'' is about , the theoretical shortest time for a piece of information to travel half the globe along the surface is about 67 milliseconds. When light is traveling in optical fibre (a Transparency and translucency, transparent material) the actual transit time is longer, in part because the speed of light is slower by about 35% in optical fibre with an refractive index ''n'' around 1.52. Straight lines are rare in global communications and the travel time increases when signals pass through electronic switches or signal regenerators. Although this distance is largely irrelevant for most applications, latency becomes important in fields such as high-frequency trading, where traders seek to gain minute advantages by delivering their trades to exchanges fractions of a second ahead of other traders. For example, traders have been switching to microwave communications between trading hubs, because of the advantage which radio waves travelling at near to the speed of light through air have over comparatively slower fibre optic signals.


Spaceflight and astronomy

Similarly, communications between the Earth and spacecraft are not instantaneous. There is a brief delay from the source to the receiver, which becomes more noticeable as distances increase. This delay was significant for communications between Mission Control Center, ground control and Apollo 8 when it became the first crewed spacecraft to orbit the Moon: for every question, the ground control station had to wait at least three seconds for the answer to arrive. The communications delay between Earth and Mars can vary between five and twenty minutes depending upon the relative positions of the two planets. As a consequence of this, if a robot on the surface of Mars were to encounter a problem, its human controllers would not be aware of it until approximately later. It would then take a further for commands to travel from Earth to Mars. Receiving light and other signals from distant astronomical sources takes much longer. For example, it takes 13 billion (13) years for light to travel to Earth from the faraway galaxies viewed in the Hubble Ultra-Deep Field images. Those photographs, taken today, capture images of the galaxies as they appeared 13 billion years ago, when the universe was less than a billion years old. The fact that more distant objects appear to be younger, due to the finite speed of light, allows astronomers to infer the evolution of stars, Galaxy formation and evolution, of galaxies, and history of the universe, of the universe itself. Astronomical distances are sometimes expressed in light-years, especially in popular science publications and media. A light-year is the distance light travels in one Julian year (astronomy), Julian year, around 9461 billion kilometres, 5879 billion miles, or 0.3066 parsecs. In round figures, a light year is nearly 10 trillion kilometres or nearly 6 trillion miles. Proxima Centauri, the closest star to Earth after the Sun, is around 4.2 light-years away.Further discussion can be found at


Distance measurement

Radar systems measure the distance to a target by the time it takes a radio-wave pulse to return to the radar antenna after being reflected by the target: the distance to the target is half the round-trip Radar#Transit time, transit time multiplied by the speed of light. A Global Positioning System (GPS) receiver measures its distance to GPS satellites based on how long it takes for a radio signal to arrive from each satellite, and from these distances calculates the receiver's position. Because light travels about () in one second, these measurements of small fractions of a second must be very precise. The Lunar Laser Ranging experiment, radar astronomy and the Deep Space Network determine distances to the Moon, planets and spacecraft, respectively, by measuring round-trip transit times.


Measurement

There are different ways to determine the value of ''c''. One way is to measure the actual speed at which light waves propagate, which can be done in various astronomical and Earth-based setups. It is also possible to determine ''c'' from other physical laws where it appears, for example, by determining the values of the electromagnetic constants relative permittivity, ''ε''0 and permeability (electromagnetism), ''μ''0 and using their relation to ''c''. Historically, the most accurate results have been obtained by separately determining the frequency and wavelength of a light beam, with their product equalling ''c''. This is described in more detail in the #Interferometry, "Interferometry" section below. In 1983 the metre was defined as "the length of the path travelled by light in vacuum during a time interval of of a second", fixing the value of the speed of light at by definition, as #Increased accuracy of c and redefinition of the metre and second, described below. Consequently, accurate measurements of the speed of light yield an accurate realization of the metre rather than an accurate value of ''c''.


Astronomical measurements

Outer space is a convenient setting for measuring the speed of light because of its large scale and nearly perfect
vacuum A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
. Typically, one measures the time needed for light to traverse some reference distance in the Solar System, such as the radius of the Earth's orbit. Historically, such measurements could be made fairly accurately, compared to how accurately the length of the reference distance is known in Earth-based units.
Ole Rømer Ole Christensen Rømer (; 25 September 1644 – 19 September 1710) was a Danes, Danish astronomer who, in 1676, first demonstrated that light travels at a finite speed. Rømer also invented the modern thermometer showing the temperature between ...
used an astronomical measurement to make Rømer's determination of the speed of light, the first quantitative estimate of the speed of light in the year 1676.
Translated in
Reproduced in
The account published in was based on a report that Rømer read to the French Academy of Sciences in November 1676 #cohen-1940, (Cohen, 1940, p. 346).
When measured from Earth, the periods of moons orbiting a distant planet are shorter when the Earth is approaching the planet than when the Earth is receding from it. The difference is small, but the cumulative time becomes significant when measured over months. The distance travelled by light from the planet (or its moon) to Earth is shorter when the Earth is at the point in its orbit that is closest to its planet than when the Earth is at the farthest point in its orbit, the difference in distance being the diameter of the Earth's orbit around the Sun. The observed change in the moon's orbital period is caused by the difference in the time it takes light to traverse the shorter or longer distance. Rømer observed this effect for
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
's innermost major moon Io and deduced that light takes 22 minutes to cross the diameter of the Earth's orbit. Another method is to use the aberration of light, discovered and explained by James Bradley in the 18th century. This effect results from the vector addition of the velocity of light arriving from a distant source (such as a star) and the velocity of its observer (see diagram on the right). A moving observer thus sees the light coming from a slightly different direction and consequently sees the source at a position shifted from its original position. Since the direction of the Earth's velocity changes continuously as the Earth orbits the Sun, this effect causes the apparent position of stars to move around. From the angular difference in the position of stars (maximally 20.5 arcseconds) it is possible to express the speed of light in terms of the Earth's velocity around the Sun, which with the known length of a year can be converted to the time needed to travel from the Sun to the Earth. In 1729, Bradley used this method to derive that light travelled times faster than the Earth in its orbit (the modern figure is times faster) or, equivalently, that it would take light 8 minutes 12 seconds to travel from the Sun to the Earth.


Astronomical unit

Historically the speed of light was used together with timing measurements to determine a value for the astronomical unit (AU). It was redefined in 2012 as exactly . This redefinition is analogous to that of the metre and likewise has the effect of fixing the speed of light to an exact value in astronomical units per second (via the exact speed of light in metres per second).


Time of flight techniques

A method of measuring the speed of light is to measure the time needed for light to travel to a mirror at a known distance and back. This is the working principle behind experiments by Hippolyte Fizeau and Léon Foucault. The Fizeau's measurement of the speed of light in air, setup as used by Fizeau consists of a beam of light directed at a mirror away. On the way from the source to the mirror, the beam passes through a rotating cogwheel. At a certain rate of rotation, the beam passes through one gap on the way out and another on the way back, but at slightly higher or lower rates, the beam strikes a tooth and does not pass through the wheel. Knowing the distance between the wheel and the mirror, the number of teeth on the wheel, and the rate of rotation, the speed of light can be calculated. The Foucault's measurements of the speed of light, method of Foucault replaces the cogwheel with a rotating mirror. Because the mirror keeps rotating while the light travels to the distant mirror and back, the light is reflected from the rotating mirror at a different angle on its way out than it is on its way back. From this difference in angle, the known speed of rotation and the distance to the distant mirror the speed of light may be calculated. Foucault used this apparatus to measure the speed of light in air versus water, based on a suggestion by François Arago. Today, using oscilloscopes with time resolutions of less than one nanosecond, the speed of light can be directly measured by timing the delay of a light pulse from a laser or an LED reflected from a mirror. This method is less precise (with errors of the order of 1%) than other modern techniques, but it is sometimes used as a laboratory experiment in college physics classes.


Electromagnetic constants

An option for deriving ''c'' that does not directly depend on a measurement of the propagation of electromagnetic waves is to use the relation between ''c'' and the
vacuum permittivity Vacuum permittivity, commonly denoted (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric const ...
''ε''0 and
vacuum permeability The vacuum magnetic permeability (variously ''vacuum permeability'', ''permeability of free space'', ''permeability of vacuum'', ''magnetic constant'') is the magnetic permeability in a classical vacuum. It is a physical constant, conventionally ...
''μ''0 established by Maxwell's theory: ''c''2 = 1/(''ε''0''μ''0). The vacuum permittivity may be determined by measuring the capacitance and dimensions of a capacitor, whereas the value of the vacuum permeability was historically fixed at exactly through the definition of the ampere (unit), ampere. Edward Bennett Rosa, Rosa and Noah Ernest Dorsey, Dorsey used this method in 1907 to find a value of . Their method depended upon having a standard unit of electrical resistance, the "international ohm", and so its accuracy was limited by how this standard was defined.


Cavity resonance

Another way to measure the speed of light is to independently measure the frequency ''f'' and wavelength ''λ'' of an electromagnetic wave in vacuum. The value of ''c'' can then be found by using the relation ''c'' = ''fλ''. One option is to measure the resonance frequency of a cavity resonator. If the dimensions of the resonance cavity are also known, these can be used to determine the wavelength of the wave. In 1946, Louis Essen and A.C. Gordon-Smith established the frequency for a variety of normal modes of microwaves of a microwave cavity of precisely known dimensions. The dimensions were established to an accuracy of about ±0.8 μm using gauges calibrated by interferometry. As the wavelength of the modes was known from the geometry of the cavity and from electromagnetic theory, knowledge of the associated frequencies enabled a calculation of the speed of light. The Essen–Gordon-Smith result, , was substantially more precise than those found by optical techniques. By 1950, repeated measurements by Essen established a result of . A household demonstration of this technique is possible, using a microwave oven and food such as marshmallows or margarine: if the turntable is removed so that the food does not move, it will cook the fastest at the antinodes (the points at which the wave amplitude is the greatest), where it will begin to melt. The distance between two such spots is half the wavelength of the microwaves; by measuring this distance and multiplying the wavelength by the microwave frequency (usually displayed on the back of the oven, typically 2450 MHz), the value of ''c'' can be calculated, "often with less than 5% error".


Interferometry

Interferometry is another method to find the wavelength of electromagnetic radiation for determining the speed of light. A Coherence (physics), coherent beam of light (e.g. from a laser), with a known frequency (''f''), is split to follow two paths and then recombined. By adjusting the path length while observing the interference (wave propagation), interference pattern and carefully measuring the change in path length, the wavelength of the light (''λ'') can be determined. The speed of light is then calculated using the equation ''c'' = ''λf''. Before the advent of laser technology, coherent radiowave, radio sources were used for interferometry measurements of the speed of light. Interferometric determination of wavelength becomes less precise with wavelength and the experiments were thus limited in precision by the long wavelength (~) of the radiowaves. The precision can be improved by using light with a shorter wavelength, but then it becomes difficult to directly measure the frequency of the light. One way around this problem is to start with a low frequency signal of which the frequency can be precisely measured, and from this signal progressively synthesize higher frequency signals whose frequency can then be linked to the original signal. A laser can then be locked to the frequency, and its wavelength can be determined using interferometry. This technique was due to a group at the National Bureau of Standards (which later became the National Institute of Standards and Technology). They used it in 1972 to measure the speed of light in vacuum with a Measurement uncertainty, fractional uncertainty of .


History

Until the early modern period, it was not known whether light travelled instantaneously or at a very fast finite speed. The first extant recorded examination of this subject was in ancient Greece. The ancient Greeks, Arabic scholars, and classical European scientists long debated this until Rømer provided the first calculation of the speed of light. Einstein's theory of special relativity postulates that the speed of light is constant regardless of one's frame of reference. Since then, scientists have provided increasingly accurate measurements.


Early history

Empedocles (c. 490–430 BCE) was the first to propose a theory of light and claimed that light has a finite speed. He maintained that light was something in motion, and therefore must take some time to travel. Aristotle argued, to the contrary, that "light is due to the presence of something, but it is not a movement". (click on "Historical background" in the table of contents) Euclid and Ptolemy advanced Empedocles' Emission theory (vision), emission theory of vision, where light is emitted from the eye, thus enabling sight. Based on that theory, Heron of Alexandria argued that the speed of light must be Infinity, infinite because distant objects such as stars appear immediately upon opening the eyes. Early Islamic philosophy, Early Islamic philosophers initially agreed with the Aristotelian physics, Aristotelian view that light had no speed of travel. In 1021, Alhazen (Ibn al-Haytham) published the ''Book of Optics'', in which he presented a series of arguments dismissing the emission theory of Visual perception, vision in favour of the now accepted intromission theory, in which light moves from an object into the eye. This led Alhazen to propose that light must have a finite speed, and that the speed of light is variable, decreasing in denser bodies. He argued that light is substantial matter, the propagation of which requires time, even if this is hidden from the senses. Also in the 11th century, Al-Biruni, Abū Rayhān al-Bīrūnī agreed that light has a finite speed, and observed that the speed of light is much faster than the speed of sound. In the 13th century, Roger Bacon argued that the speed of light in air was not infinite, using philosophical arguments backed by the writing of Alhazen and Aristotle. In the 1270s, Witelo considered the possibility of light travelling at infinite speed in vacuum, but slowing down in denser bodies. In the early 17th century, Johannes Kepler believed that the speed of light was infinite since empty space presents no obstacle to it. René Descartes argued that if the speed of light were to be finite, the Sun, Earth, and Moon would be noticeably out of alignment during a lunar eclipse. Although this argument fails when aberration of light is taken into account, the latter was not recognized until the following century. Since such misalignment had not been observed, Descartes concluded the speed of light was infinite. Descartes speculated that if the speed of light were found to be finite, his whole system of philosophy might be demolished. Despite this, in his derivation of Snell's law, Descartes assumed that some kind of motion associated with light was faster in denser media. Pierre de Fermat derived Snell's law using the opposing assumption, the denser the medium the slower light travelled. Fermat also argued in support of a finite speed of light.


First measurement attempts

In 1629, Isaac Beeckman proposed an experiment in which a person observes the flash of a cannon reflecting off a mirror about one mile (1.6 km) away. In 1638, Galileo Galilei proposed an experiment, with an apparent claim to having performed it some years earlier, to measure the speed of light by observing the delay between uncovering a lantern and its perception some distance away. He was unable to distinguish whether light travel was instantaneous or not, but concluded that if it were not, it must nevertheless be extraordinarily rapid. According to Galileo, the lanterns he used were "at a short distance, less than a mile". Assuming the distance was not too much shorter than a mile, and that "about a thirtieth of a second is the minimum time interval distinguishable by the unaided eye", Boyer notes that Galileo's experiment could at best be said to have established a lower limit of about 60 miles per second for the velocity of light. In 1667, the Accademia del Cimento of Florence reported that it had performed Galileo's experiment, with the lanterns separated by about one mile, but no delay was observed. The actual delay in this experiment would have been about 11 microseconds. Rømer's determination of the speed of light, The first quantitative estimate of the speed of light was made in 1676 by Ole Rømer. From the observation that the periods of Jupiter's innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when receding from it, he concluded that light travels at a finite speed, and estimated that it takes light 22 minutes to cross the diameter of Earth's orbit. Christiaan Huygens combined this estimate with an estimate for the diameter of the Earth's orbit to obtain an estimate of speed of light of , which is 27% lower than the actual value. In his 1704 book ''Opticks'', Isaac Newton reported Rømer's calculations of the finite speed of light and gave a value of "seven or eight minutes" for the time taken for light to travel from the Sun to the Earth (the modern value is 8 minutes 19 seconds). Newton queried whether Rømer's eclipse shadows were coloured. Hearing that they were not, he concluded the different colours travelled at the same speed. In 1729, James Bradley discovered aberration of light, stellar aberration. From this effect he determined that light must travel 10,210 times faster than the Earth in its orbit (the modern figure is 10,066 times faster) or, equivalently, that it would take light 8 minutes 12 seconds to travel from the Sun to the Earth.


Connections with electromagnetism

In the 19th century Hippolyte Fizeau developed a method to determine the speed of light based on time-of-flight measurements on Earth and reported a value of . His method was improved upon by Léon Foucault who obtained a value of in 1862. In the year 1856,
Wilhelm Eduard Weber Wilhelm Eduard Weber ( ; ; 24 October 1804 – 23 June 1891) was a German physicist and, together with Carl Friedrich Gauss, inventor of the first electromagnetic telegraph. Biography Early years Weber was born in Schlossstrasse in Witte ...
and
Rudolf Kohlrausch Rudolf Hermann Arndt Kohlrausch (November 6, 1809 in Göttingen – March 8, 1858 in Erlangen) was a German physicist. Biography He was a native of Göttingen, the son of the Royal Hanovarian director general of schools Friedrich Kohlrausch. He ...
measured the ratio of the electromagnetic and electrostatic units of charge, 1/, by discharging a Leyden jar, and found that its numerical value was very close to the speed of light as measured directly by Fizeau. The following year Gustav Kirchhoff calculated that an electric signal in a electrical resistance, resistanceless wire travels along the wire at this speed. In the early 1860s, Maxwell showed that, according to the theory of electromagnetism he was working on, electromagnetic waves propagate in empty space at a speed equal to the above Weber/Kohlrausch ratio, and drawing attention to the numerical proximity of this value to the speed of light as measured by Fizeau, he proposed that light is in fact an electromagnetic wave. Maxwell backed up his claim with his own experiment published in the 1868 Philosophical Transactions which determined the ratio of the electrostatic and electromagnetic units of electricity.


"Luminiferous aether"

The wave properties of light were well known since Thomas Young (scientist), Thomas Young. In the 19th century, physicists believed light was propagating in a medium called aether (or ether). But for electric force, it looks more like the gravitational force in Newton's law. A transmitting medium was not required. After Maxwell theory unified light and electric and magnetic waves, it was favored that both light and electric magnetic waves propagate in the same aether medium (or called the
luminiferous aether Luminiferous aether or ether (''luminiferous'' meaning 'light-bearing') was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empt ...
). It was thought at the time that empty space was filled with a background medium called the luminiferous aether in which the electromagnetic field existed. Some physicists thought that this aether acted as a preferred frame of reference for the propagation of light and therefore it should be possible to measure the motion of the Earth with respect to this medium, by measuring the isotropy of the speed of light. Beginning in the 1880s several experiments were performed to try to detect this motion, the most famous of which is Michelson–Morley experiment, the experiment performed by Albert A. Michelson and Edward W. Morley in 1887. The detected motion was found to always be nil (within observational error). Modern experiments indicate that the two-way speed of light is isotropic (the same in every direction) to within 6 nanometres per second. Because of this experiment Hendrik Lorentz proposed that the motion of the apparatus through the aether may cause the apparatus to Lorentz contraction, contract along its length in the direction of motion, and he further assumed that the time variable for moving systems must also be changed accordingly ("local time"), which led to the formulation of the Lorentz transformation. Based on Lorentz ether theory, Lorentz's aether theory, Henri Poincaré (1900) showed that this local time (to first order in ''v''/''c'') is indicated by clocks moving in the aether, which are synchronized under the assumption of constant light speed. In 1904, he speculated that the speed of light could be a limiting velocity in dynamics, provided that the assumptions of Lorentz's theory are all confirmed. In 1905, Poincaré brought Lorentz's aether theory into full observational agreement with the principle of relativity.


Special relativity

In 1905 Einstein postulated from the outset that the speed of light in vacuum, measured by a non-accelerating observer, is independent of the motion of the source or observer. Using this and the principle of relativity as a basis he derived the
special theory of relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, "On the Electrodynamics of Moving Bodies", the theory is presen ...
, in which the speed of light in vacuum ''c'' featured as a fundamental constant, also appearing in contexts unrelated to light. This made the concept of the stationary aether (to which Lorentz and Poincaré still adhered) useless and revolutionized the concepts of space and time.


Increased accuracy of ''c'' and redefinition of the metre and second

In the second half of the 20th century, much progress was made in increasing the accuracy of measurements of the speed of light, first by cavity resonance techniques and later by laser interferometer techniques. These were aided by new, more precise, definitions of the metre and second. In 1950, Louis Essen determined the speed as , using cavity resonance. This value was adopted by the 12th General Assembly of the Radio-Scientific Union in 1957. In 1960, the history of the metre#Krypton standard, metre was redefined in terms of the wavelength of a particular spectral line of krypton-86, and, in 1967, the second was redefined in terms of the hyperfine transition frequency of the ground state of caesium-133. In 1972, using the laser interferometer method and the new definitions, a group at the US National Institute of Standards and Technology, National Bureau of Standards in Boulder, Colorado determined the speed of light in vacuum to be ''c'' = . This was 100 times less uncertain than the previously accepted value. The remaining uncertainty was mainly related to the definition of the metre. As similar experiments found comparable results for ''c'', the 15th General Conference on Weights and Measures in 1975 recommended using the value for the speed of light.


Defined as an explicit constant

In 1983 the 17th meeting of the General Conference on Weights and Measures (CGPM) found that wavelengths from frequency measurements and a given value for the speed of light are more reproducibility, reproducible than the previous standard. They kept the 1967 definition of second, so the
caesium Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has Symbol (chemistry), symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of , which makes it one of only f ...
Hyperfine structure#Use in defining the SI second and meter, hyperfine frequency would now determine both the second and the metre. To do this, they redefined the metre as "the length of the path traveled by light in vacuum during a time interval of 1/ of a second". As a result of this definition, the value of the speed of light in vacuum is exactly and has become a defined constant in the SI system of units. Improved experimental techniques that, prior to 1983, would have measured the speed of light no longer affect the known value of the speed of light in SI units, but instead allow a more precise realization of the metre by more accurately measuring the wavelength of krypton-86 and other light sources. In 2011, the CGPM stated its intention to redefine all seven SI base units using what it calls "the explicit-constant formulation", where each "unit is defined indirectly by specifying explicitly an exact value for a well-recognized fundamental constant", as was done for the speed of light. It proposed a new, but completely equivalent, wording of the metre's definition: "The metre, symbol m, is the unit of length; its magnitude is set by fixing the numerical value of the speed of light in vacuum to be equal to exactly when it is expressed in the SI unit ." This was one of the changes that was incorporated in the 2019 revision of the SI, also termed the ''New SI''.See, for example: * * *


See also

* Light-second * Speed of electricity * Speed of gravity * Speed of sound * Velocity factor * Warp drive, Warp factor (fictional)


Notes


References


Further reading


Historical references

* ** Translated as * * * * * * *


Modern references

* * * * * *


External links


"Test Light Speed in Mile Long Vacuum Tube"
''Popular Science Monthly'', September 1930, pp. 17–18.

(International Bureau of Weights and Measures, BIPM)
Speed of light in vacuum
(National Institute of Standards and Technology, NIST)

(download data gathered by Albert A. Michelson)
Subluminal
(Java applet by Greg Egan demonstrating group velocity information limits)
Light discussion on adding velocities


(Sixty Symbols, University of Nottingham Department of Physics [video])
Speed of Light
BBC Radio4 discussion (''In Our Time'', 30 November 2006)
Speed of Light
(Live-Counter – Illustrations)
Speed of Light – animated demonstrations
*
The Velocity of Light
, Albert A. Nicholson, Scientific American, 28 September 1878, p. 193 {{Authority control Fundamental constants Physical quantities Light Special relativity Velocity, Light