Lens Nucleus
   HOME

TheInfoList



OR:

The lens, or crystalline lens, is a transparent biconvex structure in most land vertebrate
eye An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system. In higher organisms, the ey ...
s. Relatively long, thin fiber cells make up the majority of the lens. These cells vary in architecture and are arranged in concentric layers. New layers of cells are recruited from a thin epithelium at the front of the lens, just below the basement membrane surrounding the lens. As a result the vertebrate lens grows throughout life. The surrounding lens membrane referred to as the
lens capsule The lens capsule is a component of the Globe (human eye), globe of the Human eye, eye. It is a clear elastic basement membrane similar in composition to other basement membranes in the body. The capsule is a very thick basement membrane and the t ...
also grows in a systematic way, ensuring the lens maintains an optically suitable shape in concert with the underlying fiber cells. Thousands of suspensory ligaments are embedded into the capsule at its largest diameter which suspend the lens within the eye. Most of these lens structures are derived from the epithelium of the embryo before birth. Along with the
cornea The cornea is the transparency (optics), transparent front part of the eyeball which covers the Iris (anatomy), iris, pupil, and Anterior chamber of eyeball, anterior chamber. Along with the anterior chamber and Lens (anatomy), lens, the cornea ...
,
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in wat ...
, and
vitreous humour The vitreous body (''vitreous'' meaning "glass-like"; , ) is the clear gel that fills the space between the lens and the retina of the eyeball (the vitreous chamber) in humans and other vertebrates. It is often referred to as the vitreous hum ...
s, the lens
refract In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
s light, focusing it onto the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
. In many land animals the shape of the lens can be altered, effectively changing the
focal length The focal length of an Optics, optical system is a measure of how strongly the system converges or diverges light; it is the Multiplicative inverse, inverse of the system's optical power. A positive focal length indicates that a system Converge ...
of the eye, enabling them to focus on objects at various distances. This adjustment of the lens is known as '' accommodation'' (see also
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor * Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname * Ernst von Below (1863–1955), German World War I general * Fred Belo ...
). In many fully aquatic vertebrates, such as fish, other methods of accommodation are used, such as changing the lens's position relative to the retina rather than changing the shape of the lens. Accommodation is analogous to the focusing of a photographic camera via changing its
lenses A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
. In land vertebrates the lens is flatter on its anterior side than on its posterior side, while in fish the lens is often close to spherical. Accommodation in humans is well studied and allows artificial means of supplementing our focus, such as
glasses Glasses, also known as eyeglasses (American English), spectacles (Commonwealth English), or colloquially as specs, are vision eyewear with clear or tinted lenses mounted in a frame that holds them in front of a person's eyes, typically u ...
, for correction of sight as we age. The
refractive power In optics, optical power (also referred to as dioptric power, refractive power, focal power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the r ...
of a younger human lens in its natural environment is approximately 18
dioptre A dioptre ( British spelling) or (American spelling), symbol dpt or D, is a unit of measurement with dimension of reciprocal length, equivalent to one reciprocal metre, . It is normally used to express the optical power of a lens or curved mi ...
s, roughly one-third of the eye's total power of about 60 dioptres. By 25 years of age the ability of the lens to alter the light path has reduced to 10 dioptres and accommodation continues to decline with age.


Structure


Position in the eye

The lens is located towards the front part of the vertebrate eye, called the
anterior segment The anterior segment or anterior cavity is the front third of the eye that includes the structures in front of the vitreous humour: the cornea, iris, ciliary body, and lens A lens is a transmissive optical device that focuses or dispers ...
, which includes the
cornea The cornea is the transparency (optics), transparent front part of the eyeball which covers the Iris (anatomy), iris, pupil, and Anterior chamber of eyeball, anterior chamber. Along with the anterior chamber and Lens (anatomy), lens, the cornea ...
and iris positioned in front of the lens. The lens is held in place by the suspensory ligaments (Zonule of Zinn), attaching the lens at its equator to the rest of the eye through the
ciliary body The ciliary body is a part of the eye that includes the ciliary muscle, which controls the shape of the lens, and the ciliary epithelium, which produces the aqueous humor. The aqueous humor is produced in the non-pigmented portion of the ciliary ...
. Behind the lens is the jelly-like
vitreous body The vitreous body (''vitreous'' meaning "glass-like"; , ) is the clear gel that fills the space between the Lens (vision), lens and the retina of the eye, eyeball (the vitreous chamber) in humans and other vertebrates. It is often referred to as ...
which helps hold the lens in place. At the front of the lens is the liquid
aqueous humor The aqueous humour is a transparent water-like fluid similar to blood plasma, but containing low protein concentrations. It is secreted from the ciliary body, a structure supporting the lens of the eyeball. It fills both the anterior and the po ...
which bathes the lens with nutrients and other things. Land vertebrate lenses usually have an
ellipsoid An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional Scaling (geometry), scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;  that is, a Surface (mathemat ...
, biconvex shape. The front surface is less curved than the back. In a human adult, the lens is typically about 10mm in diameter and 4mm thick, though its shape changes with accommodation and its size grows throughout a person's lifetime.John Forrester, Andrew Dick, Paul McMenamin, William Lee (1996). ''The Eye: Basic Sciences in Practice''. London: W. B. Saunders Company Ltd. p. 28


Anatomy

The lens has three main parts: the
lens capsule The lens capsule is a component of the Globe (human eye), globe of the Human eye, eye. It is a clear elastic basement membrane similar in composition to other basement membranes in the body. The capsule is a very thick basement membrane and the t ...
, the lens epithelium, and the lens fibers. The lens capsule is a relatively thick
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
forming the outermost layer of the lens. Inside the capsule, much thinner lens fibers form the bulk of the lens. The cells of the lens epithelium form a thin layer between the lens capsule and the outermost layer of lens fibers at the front of the lens but not the back. The lens itself lacks nerves, blood vessels, or connective tissue. Anatomists will often refer to positions of structures in the lens by describing it like a globe of the world. The front and back of the lens are referred to as the anterior and posterior "poles", like the North and South poles. The "equator" is the outer edge of the lens often hidden by the iris and is the area of most cell differentiation. As the equator is not generally in the light path of the eye, the structures involved with metabolic activity avoid scattering light that would otherwise affect vision.


Lens capsule

The lens capsule is a smooth, transparent
basement membrane The basement membrane, also known as base membrane, is a thin, pliable sheet-like type of extracellular matrix that provides cell and tissue support and acts as a platform for complex signalling. The basement membrane sits between epithelial tis ...
that completely surrounds the lens. The capsule is elastic and its main structural component is
collagen Collagen () is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, making up 25% to 35% of protein content. Amino acids are bound together to form a trip ...
. It is presumed to be synthesized by the lens epithelium and its main components in order of abundance are heparan sulfate proteoglycan (sulfated
glycosaminoglycans Glycosaminoglycans (GAGs) or mucopolysaccharides are long, linear polysaccharides consisting of repeating disaccharide units (i.e. two-sugar units). The repeating two-sugar unit consists of a uronic acid, uronic sugar and an amino sugar, except i ...
(GAGs)),
entactin Nidogen-1 (NID-1), formerly known as entactin, is a protein that in humans is encoded by the ''NID1'' gene. Both nidogen-1 and nidogen-2 are essential components of the basement membrane alongside other components such as type IV collagen, prote ...
,
type IV collagen Collagen IV (ColIV or Col4) is a type of collagen found primarily in the basal lamina. The collagen IV C4 domain at the C-terminus is not removed in post-translational processing, and the fibers link head-to-head, rather than in parallel. Also, ...
and
laminin Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major constituents of the basement membrane, namely the basal lamina (the protein network foundation for most cells and organs). Laminins are vital to bi ...
. The capsule is very elastic and so allows the lens to assume a more spherical shape when the tension of the suspensory ligaments is reduced. The human capsule varies from 2 to 28 micrometres in thickness, being thickest near the equator (peri-equatorial region) and generally thinner near the posterior pole. The photos from electron and light microscopes show an area of the capsule lens equator where the capsule grows and adjacent to where thousands of suspensory ligaments attach. Attachment must be strong enough to stop the ligaments being detached from the lens capsule. Forces are generated from holding the lens in place and the forces added to during focusing. While the capsule is thinnest at the equator where its area is increasing, the anterior and posterior capsule is thinner than the area of ligament attachment.


Lens epithelium

The lens
epithelium Epithelium or epithelial tissue is a thin, continuous, protective layer of cells with little extracellular matrix. An example is the epidermis, the outermost layer of the skin. Epithelial ( mesothelial) tissues line the outer surfaces of man ...
is a single layer of cells at the front of the lens between the lens capsule and the lens fibers. By providing the lens fibers with nutrients and removing waste, the cells of the epithelium maintain lens
homeostasis In biology, homeostasis (British English, British also homoeostasis; ) is the state of steady internal physics, physical and chemistry, chemical conditions maintained by organism, living systems. This is the condition of optimal functioning fo ...
. As ions, nutrients, and liquid enter the lens from the
aqueous humor The aqueous humour is a transparent water-like fluid similar to blood plasma, but containing low protein concentrations. It is secreted from the ciliary body, a structure supporting the lens of the eyeball. It fills both the anterior and the po ...
, Na+/K+-ATPase pumps in the lens epithelial cells pump ions out of the lens to maintain appropriate lens
osmotic concentration Osmotic concentration, formerly known as osmolarity, is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (osmol/L or Osm/L). The osmolarity of a solution is usually expressed as Osm/ ...
and volume, with equatorially positioned lens epithelium cells contributing most to this current. The activity of the Na+/K+-ATPases keeps water and current flowing through the lens from the poles and exiting through the equatorial regions. The cells of the lens epithelium also divide into new lens fibers at the lens equator. The lens lays down fibers from when it first forms in embryo until death."eye, human". Encyclopædia Britannica from
Encyclopædia Britannica 2006 Ultimate Reference Suite DVD An encyclopedia is a reference work or compendium providing summaries of knowledge, either general or special, in a particular field or discipline. Encyclopedias are divided into articles or entries that are arranged alphabetically by artic ...
2009


Lens fibers

The lens fibers form the bulk of the lens. They are long, thin, transparent cells, firmly packed, with diameters typically 4–7 micrometres and lengths of up to 12mm long in humans. The lens fibers stretch lengthwise from the posterior to the anterior poles and, when cut horizontally, are arranged in concentric layers rather like the layers of an onion. If cut along the equator, cells have a hexagonal cross section, appearing as a honeycomb. The approximate middle of each fiber lies around the equator. These tightly packed layers of lens fibers are referred to as laminae. The lens fiber cytoplasms are linked together via
gap junctions Gap junctions are Membrane channel, membrane channels between adjacent cells that allow the direct exchange of cytoplasmic substances, such small molecules, substrates, and metabolites. Gap junctions were first described as ''close appositions' ...
, intercellular bridges and interdigitations of the cells that resemble "ball and socket" forms. The lens is split into regions depending on the age of the lens fibers of a particular layer. Moving outwards from the central, oldest layer, the lens is split into an embryonic nucleus, the fetal nucleus, the adult nucleus, the inner and outer cortex. New lens fibers, generated from the lens epithelium, are added to the outer cortex. Mature lens fibers have no
organelles In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' th ...
or nuclei.


Cell fusion, voids and vacuoles

With the advent of other ways of looking at cellular structures of lenses while still in the living animal it became apparent that regions of fiber cells, at least at the lens anterior, contain large voids and vacuoles. These are speculated to be involved in lens transport systems linking the surface of the lens to deeper regions. Very similar looking structures also indicate cell fusion in the lens. The cell fusion is shown by micro-injection to form a stratified syncytium in whole lens cultures.


Development

Development Development or developing may refer to: Arts *Development (music), the process by which thematic material is reshaped * Photographic development *Filmmaking, development phase, including finance and budgeting * Development hell, when a proje ...
of the vertebrate lens begins when the human
embryo An embryo ( ) is the initial stage of development for a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male sp ...
is about 4mm long. The accompanying picture shows the process in a more easily studied chicken embryo. Unlike the rest of the eye which is derived mostly from the inner embryo layers, the lens is derived from the skin around the embryo. The first stage of lens formation takes place when a sphere of cells formed by budding of the inner embryo layers comes close to the embyro's outer skin. The sphere of cells induces nearby outer skin to start changing into the lens placode. The lens placode is the first stage of transformation of a patch of skin into the lens. At this early stage, the lens placode is a single layer of cells. As development progresses, the lens placode begins to deepen and bow inwards. As the placode continues to deepen, the opening to the
surface ectoderm The surface ectoderm, AKA external ectoderm, is one of the two early embryonic divisions of the ectoderm. The other early division of the ectoderm is the neuroectoderm. The surface ectoderm develops into the following structures: *Skin (only th ...
constricts and the lens cells bud off from the embryo's skin to form a sphere of cells known as the "lens vesicle". When the embryo is about 10mm long the lens vesicle has completely separated from the skin of the embryo. The embryo then sends
signals A signal is both the process and the result of Signal transmission, transmission of data over some transmission media, media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processin ...
from the developing retina, inducing the cells closest to the posterior end of the lens vesicle to elongate toward the anterior end of the vesicle. These signals also induce the synthesis of proteins called crystallins.''The Eye: Basic Sciences in Practice'', p. 102, As the name suggests the crystallins can form a clear highly refractive jelly. These elongating cells eventually fill in the center of the vesicle with cells, that are long and thin like a strand of hair, called fibers. These primary fibers become the nucleus in the mature lens. The epithelial cells that do not form into fibers nearest the lens front give rise to the lens epithelium. Additional fibers are derived from lens epithelial cells located at the lens equator. These cells lengthen towards the front and back wrapping around fibers already laid down. The new fibers need to be longer to cover earlier fibers but as the lens gets larger the ends of the newer fibers no longer reach as far towards the front and back of the lens. The lens fibers that do not reach the poles form tight, interdigitating seams with neighboring fibers. These seams being less crystalline than the bulk of the lens are more visible and are termed "sutures". The suture patterns become more complex as more layers of lens fibers are added to the outer portion of the lens. The lens continues to grow after birth, with the new secondary fibers being added as outer layers. New lens fibers are generated from the equatorial cells of the lens epithelium, in a region referred to as the "germinative zone" and "bow region". The lens epithelial cells elongate, lose contact with the capsule and epithelium at the back and front of the lens, synthesize
crystallin In anatomy, a crystallin is a water-soluble structural protein found in the lens and the cornea of the eye accounting for the transparency of the structure. It has also been identified in other places such as the heart, and in aggressive breast ...
, and then finally lose their nuclei (enucleate) as they become mature lens fibers. In humans, as the lens grows by laying down more fibers through to early adulthood, the lens becomes more ellipsoid in shape. After about age 20 the lens grows rounder again and the iris is very important for this development. Several proteins control the embryonic development of the lens though PAX6 is considered the master regulator gene of this organ. Other effectors of proper lens development include the Wnt signaling components
BCL9 B-cell CLL/lymphoma 9 protein is a protein that in humans is encoded by the ''BCL9'' gene. Function BCL9, together with its paralogue gene BCL9L (BCL9 like or BCL9.2), have been extensively studied for their role as transcriptional beta-caten ...
and Pygo2. The whole process of differentiation of the epithelial cells into crystallin filled fiber cells without organelles occurs within the confines of the lens capsule. Older cells cannot be shed and are instead internalized towards the center of the lens. This process results in a complete temporally layered record of the differentiation process from the start at the lens surface to the end at the lens center. The lens is therefore valuable to scientists studying the process of cell differentiation.


Variations in lens structure

In many aquatic vertebrates, the lens is considerably thicker, almost spherical resulting in increased light refraction. This difference helps compensate for the smaller angle of refraction between the eye's cornea and the watery environment, as they have more similar refractive indices than cornea and air. The fiber cells of fish are generally considerably thinner than those of land vertebrates and it appears crystallin proteins are transported to the organelle free cells at the lens exterior to the inner cells through many layers of cells. Some vertebrates need to see well both above and below water at times. One example is diving birds which have the ability to change focus by 50 to 80 dioptres. Compared with animals adapted for only one environment diving birds have a somewhat altered lens and cornea structure with focus mechanisms to allow for both environments. Even among terrestrial animals the lens of
primate Primates is an order (biology), order of mammals, which is further divided into the Strepsirrhini, strepsirrhines, which include lemurs, galagos, and Lorisidae, lorisids; and the Haplorhini, haplorhines, which include Tarsiiformes, tarsiers a ...
s such as humans is unusually flat going some way to explain why our vision, unlike diving birds, is particularly blurry under water.


Function


Focusing

In humans the widely quoted Helmholtz mechanism of focusing, also called accommodation, is often referred to as a "model". Direct experimental proof of any lens model is necessarily difficult as the vertebrate lens is transparent and only functions well in the living animals. When considering all vertebrates aspects of all models may play varying roles in lens focus.


The shape changing lens of many land based vertebrates


External forces

The model of a shape changing lens of humans was proposed by Young in a lecture on the 27th Nov 1800. Others such as Helmholtz and Huxley refined the model in the mid-1800s explaining how the
ciliary muscle The ciliary muscle is an intrinsic muscle of the eye formed as a ring of smooth muscleSchachar, Ronald A. (2012). "Anatomy and Physiology." (Chapter 4) . in the eye's middle layer, the uvea ( vascular layer). It controls accommodation for vie ...
contracts rounding the lens to focus near and this model was popularized by Helmholtz in 1909. The model may be summarized like this. Normally the lens is held under tension by its suspending ligaments being pulled tight by the pressure of the eyeball. At short focal distance the ciliary muscle contracts relieving some of the tension on the ligaments, allowing the lens to elastically round up a bit, increasing refractive power. Changing focus to an object at a greater distance requires a thinner less curved lens. This is achieved by relaxing some of the sphincter like ciliary muscles. While not referenced this presumably allows the pressure in the eyeball to again expand it outwards, pulling harder on the lens making it less curved and thinner, so increasing the focal distance. There is a problem with the Helmholtz model in that despite mathematical models being tried none has come close enough to working using only the Helmholtz mechanisms. Schachar has proposed a model for land based vertebrates that was not well received. The theory allows mathematical modeling to more accurately reflect the way the lens focuses while also taking into account the complexities in the suspensory ligaments and the presence of radial as well as circular muscles in the ciliary body. In this model the ligaments may pull to varying degrees on the lens at the equator using the radial muscles while the ligaments offset from the equator to the front and back are relaxed to varying degrees by contracting the circular muscles. These multiple actions operating on the elastic lens allows it to change lens shape at the front more subtly. Not only changing focus, but also correcting for lens aberrations that might otherwise result from the changing shape while better fitting mathematical modeling. The "
catenary In physics and geometry, a catenary ( , ) is the curve that an idealized hanging chain or wire rope, cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, ...
" model of lens focus proposed by
Coleman Coleman may refer to: Places Antarctica * Coleman Glacier (Antarctica) * Coleman Peak, Ross Island Canada * Coleman, Alberta * Coleman, Ontario * Coleman, Prince Edward Island United Kingdom * Coleman, Leicester, England United States * C ...
demands less tension on the ligaments suspending the lens. Rather than the lens as a whole being stretched thinner for distance vision and allowed to relax for near focus, contraction of the circular ciliary muscles results in the lens having less hydrostatic pressure against its front. The lens front can then reform its shape between the suspensory ligaments in a similar way to a slack chain hanging between two poles might change its curve when the poles are moved closer together. This model requires fluid movement of the lens front only rather than trying to change the shape of the lens as a whole.


Internal forces

When Thomas Young proposed the changing of the human lens's shape as the mechanism for focal accommodation in 1801 he thought the lens may be a muscle capable of contraction. This type of model is termed intracapsular accommodation as it relies on activity within the lens. In a 1911 Nobel lecture Allvar Gullstrand spoke on "How I found the intracapsular mechanism of accommodation" and this aspect of lens focusing continues to be investigated. Young spent time searching for the nerves that could stimulate the lens to contract without success. Since that time it has become clear the lens is not a simple muscle stimulated by a nerve so the 1909 Helmholtz model took precedence. Pre-twentieth century investigators did not have the benefit of many later discoveries and techniques. Membrane proteins such as
aquaporin Aquaporins, also called water channels, are channel proteins from a larger family of major intrinsic proteins that form pores in the membrane of biological cells, mainly facilitating transport of water between cells. The cell membranes of ...
s which allow water to flow into and out of cells are the most abundant membrane protein in the lens.
Connexin Connexins (Cx)TC# 1.A.24, or gap junction proteins, are structurally related transmembrane proteins that assemble to form vertebrate gap junctions. An entirely different family of proteins, the innexins, forms gap junctions in invertebrates. Eac ...
s which allow electrical coupling of cells are also prevalent. Electron microscopy and immunofluorescent microscopy show fiber cells to be highly variable in structure and composition. Magnetic resonance imaging confirms a layering in the lens that may allow for different refractive plans within it. The
refractive index In optics, the refractive index (or refraction index) of an optical medium is the ratio of the apparent speed of light in the air or vacuum to the speed in the medium. The refractive index determines how much the path of light is bent, or refrac ...
of human lens varies from approximately 1.406 in the central layers down to 1.386 in less dense layers of the lens. This index gradient enhances the
optical power In optics, optical power (also referred to as dioptric power, refractive power, focal power, focusing power, or convergence power) is the degree to which a lens, mirror, or other optical system converges or diverges light. It is equal to the ...
of the lens. As more is learned about mammalian lens structure from ''in situ'' Scheimpflug photography, MRI and physiological investigations it is becoming apparent the lens itself is not responding entirely passively to the surrounding ciliary muscle but may be able to change its overall refractive index through mechanisms involving water dynamics in the lens still to be clarified. The accompanying micrograph shows wrinkled fibers from a relaxed sheep lens after it is removed from the animal indicating shortening of the lens fibers during near focus accommodation. The age related changes in the human lens may also be related to changes in the water dynamics in the lens.


Lenses of birds, reptiles, amphibians, fish and others

In
reptile Reptiles, as commonly defined, are a group of tetrapods with an ectothermic metabolism and Amniotic egg, amniotic development. Living traditional reptiles comprise four Order (biology), orders: Testudines, Crocodilia, Squamata, and Rhynchocepha ...
s and
bird Birds are a group of warm-blooded vertebrates constituting the class (biology), class Aves (), characterised by feathers, toothless beaked jaws, the Oviparity, laying of Eggshell, hard-shelled eggs, a high Metabolism, metabolic rate, a fou ...
s, the ciliary body which supports the lens via suspensory ligaments also touches the lens with a number of pads on its inner surface. These pads compress and release the lens to modify its shape while focusing on objects at different distances; the suspensory ligaments usually perform this function in
mammal A mammal () is a vertebrate animal of the Class (biology), class Mammalia (). Mammals are characterised by the presence of milk-producing mammary glands for feeding their young, a broad neocortex region of the brain, fur or hair, and three ...
s. With
vision in fish Visual system, Vision is an important sensory system for most species of fish. Fish eyes are similar to the eyes of terrestrial animal, terrestrial vertebrates like bird vision, birds and mammals, but have a more spherical lens (anatomy), lens. ...
and
amphibian Amphibians are ectothermic, anamniote, anamniotic, tetrapod, four-limbed vertebrate animals that constitute the class (biology), class Amphibia. In its broadest sense, it is a paraphyletic group encompassing all Tetrapod, tetrapods, but excl ...
s, the lens is fixed in shape, and focusing is instead achieved by moving the lens forwards or backwards within the eye using a muscle called the retractor lentus. In
cartilaginous fish Chondrichthyes (; ) is a class of jawed fish that contains the cartilaginous fish or chondrichthyans, which all have skeletons primarily composed of cartilage. They can be contrasted with the Osteichthyes or ''bony fish'', which have skeleto ...
, the suspensory ligaments are replaced by a membrane, including a small muscle at the underside of the lens. This muscle pulls the lens forward from its relaxed position when focusing on nearby objects. In
teleost Teleostei (; Ancient Greek, Greek ''teleios'' "complete" + ''osteon'' "bone"), members of which are known as teleosts (), is, by far, the largest group of ray-finned fishes (class Actinopterygii), with 96% of all neontology, extant species of f ...
s, by contrast, a muscle projects from a vascular structure in the floor of the eye, called the ''falciform process'', and serves to pull the lens backwards from the relaxed position to focus on distant objects. While amphibians move the lens forward, as do cartilaginous fish, the muscles involved are not similar in either type of animal. In
frog A frog is any member of a diverse and largely semiaquatic group of short-bodied, tailless amphibian vertebrates composing the order (biology), order Anura (coming from the Ancient Greek , literally 'without tail'). Frog species with rough ski ...
s, there are two muscles, one above and one below the lens, while other amphibians have only the lower muscle. In the simplest vertebrates, the
lamprey Lampreys (sometimes inaccurately called lamprey eels) are a group of Agnatha, jawless fish comprising the order (biology), order Petromyzontiformes , sole order in the Class (biology), class Petromyzontida. The adult lamprey is characterize ...
s and
hagfish Hagfish, of the Class (biology), class Myxini (also known as Hyperotreti) and Order (biology), order Myxiniformes , are eel-shaped Agnatha, jawless fish (occasionally called slime eels). Hagfish are the only known living Animal, animals that h ...
, the lens is not attached to the outer surface of the eyeball at all. There is no aqueous humor in these fish, and the vitreous body simply presses the lens against the surface of the cornea. To focus its eyes, a lamprey flattens the cornea using muscles outside of the eye and pushes the lens backwards. While not vertebrate, brief mention is made here of the convergent evolution of vertebrate and Molluscan eyes. The most complex Molluscan eye is the
Cephalopod eye Cephalopods, as active marine predators, possess sensory organs specialized for use in aquatic conditions.Budelmann BU. "Cephalopod sense organs, nerves and the brain: Adaptations for high performance and life style." Marine and Freshwater Behav ...
which is superficially similar structure and function to a vertebrate eye, including accommodation, while differing in basic ways such as having a two part lens and no cornea. The fundamental requirements of optics must be filled by all eyes with lenses using the tissues at their disposal so superficially eyes all tend to look similar. It is the way optical requirements are met using different cell types and structural mechanisms that varies among animals.


Crystallins and transparency

Crystallin In anatomy, a crystallin is a water-soluble structural protein found in the lens and the cornea of the eye accounting for the transparency of the structure. It has also been identified in other places such as the heart, and in aggressive breast ...
s are water-soluble
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s that compose over 90% of the protein within the lens. The three main crystallin types found in the human eye are α-, β-, and γ-crystallins. Crystallins tend to form soluble, high-molecular weight aggregates that pack tightly in lens fibers, thus increasing the index of refraction of the lens while maintaining its transparency. β and γ crystallins are found primarily in the lens, while subunits of α -crystallin have been isolated from other parts of the eye and the body. α-crystallin proteins belong to a larger superfamily of molecular chaperone proteins, and so it is believed that the crystallin proteins were evolutionarily recruited from chaperone proteins for optical purposes. The chaperone functions of α-crystallin may also help maintain the lens proteins, which must last a human for their entire lifetime. Another important factor in maintaining the transparency of the lens is the absence of light-scattering organelles such as the
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
,
endoplasmic reticulum The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryote, eukaryotic cell, and has many other important functions such as protein folding. The word endoplasmic means "within the cytoplasm", and reticulum is Latin for ...
, and
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
within the mature lens fibers. Lens fibers also have a very extensive
cytoskeleton The cytoskeleton is a complex, dynamic network of interlinking protein filaments present in the cytoplasm of all cells, including those of bacteria and archaea. In eukaryotes, it extends from the cell nucleus to the cell membrane and is compos ...
that maintains the precise shape and packing of the lens fibers; disruptions/mutations in certain cytoskeletal elements can lead to the loss of transparency. The lens blocks most
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light in the wavelength range of 300–400 nm; shorter wavelengths are blocked by the cornea. The pigment responsible for blocking the light is
3-hydroxykynurenine 3-Hydroxykynurenine is a metabolite of tryptophan, which filters UV light in the human lens A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of ...
glucoside, a product of
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromat ...
catabolism in the lens epithelium. High intensity ultraviolet light can harm the retina, and artificial
intraocular lens An intraocular lens (IOL) is a lens (optics), lens implanted in the human eye, eye usually as part of a treatment for cataracts or for correcting other vision problems such as myopia, near-sightedness (myopia) and farsightedness, far-sightednes ...
es are therefore manufactured to also block ultraviolet light. People lacking a lens (a condition known as
aphakia Aphakia is the absence of the lens of the eye, due to surgical removal, such as in cataract surgery, a perforating wound or ulcer, or congenital anomaly. It causes a loss of ability to maintain focus ( accommodation), high degree of farsightedn ...
) perceive ultraviolet light as whitish blue or whitish-violet.


Nourishment

The lens is metabolically active and requires nourishment in order to maintain its growth and transparency. Compared to other tissues in the eye, however, the lens has considerably lower energy demands. By nine weeks into human development, the lens is surrounded and nourished by a net of vessels, the tunica vasculosa lentis, which is derived from the
hyaloid artery The hyaloid artery is a branch of the ophthalmic artery, which is itself a branch of the internal carotid artery. It is contained within the optic stalk of the eye and extends from the optic disc through the vitreous humor to the lens. Usually ...
. Beginning in the fourth month of development, the hyaloid artery and its related vasculature begin to atrophy and completely disappear by birth. In the postnatal eye, Cloquet's canal marks the former location of the hyaloid artery. After regression of the hyaloid artery, the lens receives all its nourishment from the aqueous humor. Nutrients diffuse in and waste diffuses out through a constant flow of fluid from the anterior/posterior poles of the lens and out of the equatorial regions, a dynamic that is maintained by the Na+/K+-ATPase pumps located in the equatorially positioned cells of the lens epithelium. The interaction of these pumps with water channels into cells called aquaporins, molecules less than 100 daltons in size among cells via gap junctions, and calcium using transporters/regulators (TRPV channels) results in a flow of nutrients throughout the lens.
Glucose Glucose is a sugar with the Chemical formula#Molecular formula, molecular formula , which is often abbreviated as Glc. It is overall the most abundant monosaccharide, a subcategory of carbohydrates. It is mainly made by plants and most algae d ...
is the primary energy source for the lens. As mature lens fibers do not have
mitochondria A mitochondrion () is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi. Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is us ...
, approximately 80% of the glucose is metabolized via
anaerobic metabolism Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing ...
.''Biochemistry of the Eye'', 2nd ed, p. 107–8, The remaining fraction of glucose is shunted primarily down the
pentose phosphate pathway The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt or HMP shunt) is a metabolic pathway parallel to glycolysis. It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-ph ...
. The lack of
aerobic respiration Cellular respiration is the process of oxidizing biological fuels using an inorganic electron acceptor, such as oxygen, to drive production of adenosine triphosphate (ATP), which stores chemical energy in a biologically accessible form. Cellu ...
means that the lens consumes very little oxygen.


Clinical significance

*
Cataracts A cataract is a cloudy area in the lens of the eye that leads to a decrease in vision of the eye. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colours, blurry or double vision, halos around ligh ...
are opacities of the lens. While some are small and do not require any treatment, others may be large enough to block light and obstruct vision. Cataracts usually develop as the aging lens becomes more and more opaque, but cataracts can also form congenitally or after injury to the lens. Nuclear sclerosis is a type of age-related cataract.
Diabetes Diabetes mellitus, commonly known as diabetes, is a group of common endocrine diseases characterized by sustained high blood sugar levels. Diabetes is due to either the pancreas not producing enough of the hormone insulin, or the cells of th ...
is another risk factor for cataract.
Cataract surgery Cataract surgery, also called lens replacement surgery, is the removal of the natural lens (anatomy), lens of the human eye, eye that has developed a cataract, an opaque or cloudy area. The eye's natural lens is usually replaced with an artific ...
involves the removal of the lens and insertion of an artificial intraocular lens. *
Presbyopia Presbyopia is a physiological insufficiency of optical Accommodation (vertebrate eye), accommodation associated with the aging of the human eye, eye; it results in progressively worsening ability to focus clearly on close objects. Also known as ...
is the age-related loss of accommodation, which is marked by the inability of the eye to focus on nearby objects. The exact mechanism is still unknown, but age-related changes in the hardness, shape, and size of the lens have all been linked to the condition. *
Ectopia lentis Ectopia lentis is a displacement or malposition of the eye's lens from its normal location. A partial dislocation of a lens is termed lens subluxation or subluxated lens; a complete dislocation of a lens is termed lens luxation or luxated lens ...
is the displacement of the lens from its normal position. *
Aphakia Aphakia is the absence of the lens of the eye, due to surgical removal, such as in cataract surgery, a perforating wound or ulcer, or congenital anomaly. It causes a loss of ability to maintain focus ( accommodation), high degree of farsightedn ...
is the absence of the lens from the eye. Aphakia can be the result of surgery or injury, or it can be congenital.


Additional images

Image:MRI of human eye.jpg, MRI scan of human eye showing lens. Image:Gray875.png, Interior of anterior chamber of eye. Image:Gray884.png, The crystalline lens, hardened and divided. Image:Gray887.png, Section through the margin of the lens, showing the transition of the epithelium into the lens fibers known as the bow region. File:Three Main Layers of the Eye.png, The structures of the eye labeled File:Three Internal chambers of the Eye.svg, Another view of the eye and the structures of the eye labeled File:Editable_ray_diagram_of_eye_v0.svg, This svg file was configured so that the rays, diaphragm and crystalline lens are easily modifiedDownload and open with Inkscape 9.1. The separate components reside on different "layers" to facilitated editing.


See also

*
Accommodation reflex The accommodation reflex (or ''accommodation-convergence reflex'') is a reflex action of the eye, in response to focusing on a near object, then looking at a distant object (and vice versa), comprising coordinated changes in vergence, lens shap ...
*
Crystallin In anatomy, a crystallin is a water-soluble structural protein found in the lens and the cornea of the eye accounting for the transparency of the structure. It has also been identified in other places such as the heart, and in aggressive breast ...
* Evolution of the eye, for how the lens evolved *
Intraocular lens An intraocular lens (IOL) is a lens (optics), lens implanted in the human eye, eye usually as part of a treatment for cataracts or for correcting other vision problems such as myopia, near-sightedness (myopia) and farsightedness, far-sightednes ...
es * Iris *
Lens capsule The lens capsule is a component of the Globe (human eye), globe of the Human eye, eye. It is a clear elastic basement membrane similar in composition to other basement membranes in the body. The capsule is a very thick basement membrane and the t ...
*
Phacoemulsification Phacoemulsification is a cataract surgery method in which the internal lens of the eye which has developed a cataract is emulsified with the tip of an ultrasonic handpiece and aspirated from the eye. Aspirated fluids are replaced with irrigation ...
*
Visual perception Visual perception is the ability to detect light and use it to form an image of the surrounding Biophysical environment, environment. Photodetection without image formation is classified as ''light sensing''. In most vertebrates, visual percept ...
* Zonules of Zinn


References


External links

* {{Authority control Human eye anatomy Lenses