A laser is a device that emits
light
Light, visible light, or visible radiation is electromagnetic radiation that can be visual perception, perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400– ...
through a process of
optical amplification based on the
stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to ...
of
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
. The word ''laser'' originated as an
acronym
An acronym is a type of abbreviation consisting of a phrase whose only pronounced elements are the initial letters or initial sounds of words inside that phrase. Acronyms are often spelled with the initial Letter (alphabet), letter of each wor ...
for light amplification by stimulated emission of radiation. The first laser was built in 1960 by
Theodore Maiman
Theodore Harold Maiman (July 11, 1927 – May 5, 2007) was an American engineer and physicist who is widely credited with the invention of the laser.Johnson, John Jr. (May 11, 2008). "Theodore H. Maiman, at age 32; scientist created the first L ...
at
Hughes Research Laboratories, based on theoretical work by
Charles H. Townes and
Arthur Leonard Schawlow and the optical amplifier patented by
Gordon Gould.
A laser differs from other sources of light in that it emits light that is
''coherent''.
Spatial coherence allows a laser to be focused to a tight spot, enabling uses such as optical communication,
laser cutting
Laser cutting is a technology that uses a laser to vaporize materials, resulting in a cut edge. While typically used for industrial manufacturing applications, it is now used by schools, small businesses, architecture, and hobbyists. Laser cutt ...
, and
lithography
Lithography () is a planographic method of printing originally based on the miscibility, immiscibility of oil and water. The printing is from a stone (lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by ...
. It also allows a laser beam to stay narrow over great distances (
collimation), used in
laser pointer
A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. Coherence (physics), coherent light) to highlight something of interest with a small brigh ...
s,
lidar
Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
, and
free-space optical communication
Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking over long distances. "Free space" means air, oute ...
. Lasers can also have high
temporal coherence
Coherence expresses the potential for two waves to Wave interference, interfere. Two Monochromatic radiation, monochromatic beams from a single source always interfere. Wave sources are not strictly monochromatic: they may be ''partly coherent''. ...
, which permits them to emit light with a very narrow
frequency spectrum
In signal processing, the power spectrum S_(f) of a continuous time signal x(t) describes the distribution of power into frequency components f composing that signal. According to Fourier analysis, any physical signal can be decomposed int ...
. Temporal coherence can also be used to produce
ultrashort pulses of light with a broad spectrum but durations measured in
attoseconds.
Lasers are used in
fiber-optic
An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at ...
and free-space optical communications,
optical disc drives,
laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a Electric charge, negatively charged cylinder call ...
s,
barcode scanner
A barcode reader or barcode scanner is an optical scanner that can read printed barcodes and send the data they contain to computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses ...
s, semiconductor chip manufacturing (
photolithography
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.
The process begins with a photosensiti ...
,
etching
Etching is traditionally the process of using strong acid or mordant to cut into the unprotected parts of a metal surface to create a design in intaglio (incised) in the metal. In modern manufacturing, other chemicals may be used on other type ...
),
laser surgery
Laser surgery is a type of surgery that cuts tissue using a laser in contrast to using a scalpel.
Soft-tissue laser surgery is used in a variety of applications in humans ( general surgery, neurosurgery, ENT, dentistry, orthodontics, and ...
and skin treatments, cutting and
welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
materials, military and
law enforcement
Law enforcement is the activity of some members of the government or other social institutions who act in an organized manner to enforce the law by investigating, deterring, rehabilitating, or punishing people who violate the rules and norms gove ...
devices for marking targets and
measuring range and speed, and in
laser lighting displays for entertainment. The laser is regarded as one of the greatest inventions of the 20th century.
Terminology
The first device using amplification by stimulated emission operated at
microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
frequencies, and was called a ''
maser'', for "microwave amplification by stimulated emission of radiation". When similar
optical devices were developed they were first called ''optical masers'', until "microwave" was replaced by "light" in the acronym, to become ''laser''.
Today, all such devices operating at frequencies higher than microwaves (approximately above 300
GHz
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), often described as being equivalent to one event (or Cycle per second, cycle) per second. The hertz is an SI derived unit whose formal expression in ter ...
) are called lasers (e.g. ''infrared lasers'', ''ultraviolet lasers'', ''
X-ray lasers'', ''
gamma-ray lasers''), whereas devices operating at
microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
or lower
radio frequencies are called masers.
The
back-formed verb "
to lase" is frequently used in the field, meaning "to give off coherent light," especially about the
gain medium of a laser; when a laser is operating, it is said to be "
lasing". The terms ''laser'' and ''maser'' are also used for naturally occurring coherent emissions, as in ''
astrophysical maser'' and ''
atom laser''.
A laser that produces light by itself is technically an optical oscillator rather than an
optical amplifier
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback fro ...
as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct.
Some sources refer to the word laser as an
anacronym
An acronym is a type of abbreviation consisting of a phrase whose only pronounced elements are the initial letters or initial sounds of words inside that phrase. Acronyms are often spelled with the initial letter of each word in all caps wit ...
, meaning an acronym so widely used as a noun that it is no longer considered an abbreviation.
Fundamentals
Photons
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
, the quanta of
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
, are released and absorbed from energy levels in atoms and molecules. In a lightbulb or a star, the energy is emitted from many different levels giving photons with a broad range of energies. This process is called
thermal radiation
Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electro ...
.
The underlying physical process creating photons in a laser is the same as in thermal radiation, but the actual emission is not the result of random thermal processes. Instead, the release of a photon is triggered by the nearby passage of another photon. This is called
stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to ...
. For this process to work, the passing photon must be similar in energy, and thus wavelength, to the one that could be released by the atom or molecule, and the atom or molecule must be in the suitable excited state.
[
The photon that is emitted by stimulated emission is identical to the photon that triggered its emission, and both photons can go on to trigger stimulated emission in other atoms, creating the possibility of a chain reaction. For this to happen, many of the atoms or molecules must be in the proper excited state so that the photons can trigger them. In most materials, atoms or molecules drop out of excited states fairly rapidly, making it difficult or impossible to produce a chain reaction. The materials chosen for lasers are the ones that have metastable states, which stay excited for a relatively long time. In ]laser physics
Laser science or laser physics is a branch of optics that describes the theory and practice of lasers.
Laser science is principally concerned with quantum electronics, laser construction, optical cavity design, the physics of producing a po ...
, such a material is called an active laser medium. Combined with an energy source that continues to "pump" energy into the material, it is possible to have enough atoms or molecules in an excited state for a chain reaction to develop.
Lasers are distinguished from other light sources by their coherence. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is diffraction-limited. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
in a vacuum
A vacuum (: vacuums or vacua) is space devoid of matter. The word is derived from the Latin adjective (neuter ) meaning "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressur ...
. Most "single wavelength" lasers produce radiation in several ''modes'' with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity, some lasers emit a broad spectrum of light or emit different wavelengths of light simultaneously. Certain lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit. All such devices are classified as "lasers" based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
Design
A laser consists of a gain medium, a mechanism to energize it, and something to provide optical feedback
Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause and effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handle ...
. The gain medium is a material with properties that allow it to amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (power increases). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually one frequency dominates over all others, meaning that a coherent beam has been formed.
The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier.
For the gain medium to amplify light, it needs to be supplied with energy in a process called pumping. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser.
The most common type of laser uses feedback from an optical cavity
An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers, ...
a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the output coupler, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or curved), the light coming out of the laser may spread out or form a narrow beam. In analogy to electronic oscillator
An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found ...
s, this device is sometimes called a ''laser oscillator''.
Most practical lasers contain additional elements that affect the properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
Laser physics
Electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s and how they interact with electromagnetic field
An electromagnetic field (also EM field) is a physical field, varying in space and time, that represents the electric and magnetic influences generated by and acting upon electric charges. The field at any point in space and time can be regarde ...
s are important in the understanding of chemistry
Chemistry is the scientific study of the properties and behavior of matter. It is a physical science within the natural sciences that studies the chemical elements that make up matter and chemical compound, compounds made of atoms, molecules a ...
and physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
.
Stimulated emission
In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:
An electron in an atom can absorb energy from light (photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s) or heat ( phonons) only if there is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
When an electron is excited from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions to different levels having different time constants. This process is called spontaneous emission
Spontaneous emission is the process in which a Quantum mechanics, quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited state, excited energy state to a lower energy state (e.g., its ground state ...
. Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
. The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of fluorescence
Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
and thermal emission.
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
Gain medium and cavity
The gain medium is put into an excited state
In quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Add ...
by an external source of energy. In most lasers, this medium consists of a population of atoms that have been excited into such a state using an outside light source, or an electrical field that supplies energy for atoms to absorb and be transformed into their excited states.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state
State most commonly refers to:
* State (polity), a centralized political organization that regulates law and society within a territory
**Sovereign state, a sovereign polity in international law, commonly referred to as a country
**Nation state, a ...
: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher energy (" excited") quantum state
In quantum physics, a quantum state is a mathematical entity that embodies the knowledge of a quantum system. Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system ...
s. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an optical amplifier
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback fro ...
. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.
For lasing media with extremely high gain, so-called superluminescence, light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see, for example, nitrogen laser), the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called astrophysical masers/lasers.
The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser.
The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.
If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power, the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the '' lasing threshold''. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.
The light emitted
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the phase of the emitted light is 90 degrees in lead of the stimulating light. This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator's design. The fundamental laser linewidth of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate injection seeder to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
In 1963, Roy J. Glauber showed that coherent states are formed from combinations of photon number states, for which he was awarded the Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
. A coherent beam of light is formed by single-frequency quantum photon states distributed according to a Poisson distribution
In probability theory and statistics, the Poisson distribution () is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known const ...
. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics.
Many lasers produce a beam that can be approximated as a Gaussian beam
In optics, a Gaussian beam is an idealized beam of electromagnetic radiation whose amplitude envelope in the transverse plane is given by a Gaussian function; this also implies a Gaussian intensity (irradiance) profile. This fundamental (or ...
; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the transverse modes often approximated using Hermite– Gaussian or Laguerre-Gaussian functions. Some high-power lasers use a flat-topped profile known as a " tophat beam". Unstable laser resonators (not used in most lasers) produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as Bessel beams and optical vortexes.
Near the "waist" (or focal region) of a laser beam, it is highly '' collimated'': the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by diffraction
Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
theory. Thus, the "pencil beam" directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the Earth). On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing a lens
A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements'') ...
system, as is always included, for instance, in a laser pointer
A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. Coherence (physics), coherent light) to highlight something of interest with a small brigh ...
whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.
A laser beam profiler is used to measure the intensity profile, width, and divergence of laser beams.
Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties.
Quantum vs. classical emission processes
The mechanism of producing radiation in a laser relies on stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to ...
, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
, who derived the relationship between the ''A'' coefficient, describing spontaneous emission, and the ''B'' coefficient which applies to absorption and stimulated emission. In the case of the free-electron laser
A free-electron laser (FEL) is a fourth generation light source producing extremely brilliant and short pulses of radiation. An FEL functions much as a laser but employs relativistic electrons as a active laser medium, gain medium instead of using ...
, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is ...
.
Modes of operation
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course, even a laser whose output is normally continuous can be intentionally turned on and off at some rate to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall into that category.
Continuous-wave operation
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as a '' continuous-wave'' (''CW'') laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed "continuous-wave" as their output power is steady when averaged over longer periods, with the very high-frequency power variations having little or no impact on the intended application. (However, the term is not applied to mode-locked lasers, where the ''intention'' is to create very short pulses at the rate of the round-trip time.)
For continuous-wave operation, the population inversion of the gain medium needs to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode.
Pulsed operation
The pulsed operation of lasers refers to any laser not classified as a continuous wave so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing many different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between pulses. In laser ablation, for example, a small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain nonlinear optical
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typicall ...
effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some ''dye lasers'' and ''vibronic solid-state lasers'' produces optical gain over a wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few femtoseconds (10−15 s).
Q-switching
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
Mode locking
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy–time uncertainty
Uncertainty or incertitude refers to situations involving imperfect or unknown information. It applies to predictions of future events, to physical measurements that are already made, or to the unknown, and is particularly relevant for decision ...
), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium
Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
-doped, artificially grown sapphire
Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
( Ti:sapphire), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathe ...
in optical materials (e.g. in second-harmonic generation
Second-harmonic generation (SHG), also known as frequency doubling, is the lowest-order wave-wave nonlinear interaction that occurs in various systems, including optical, radio, atmospheric, and magnetohydrodynamic systems. As a prototype behav ...
, parametric down-conversion, optical parametric oscillators and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent; that is, the pulses (and not just their envelopes) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research.
Pulsed pumping
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser that is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high-energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term st ...
which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated, preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.
History
Foundations
In 1917, Albert Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
established the theoretical foundations for the laser and the maser in the paper "''Zur Quantentheorie der Strahlung''" ("On the Quantum Theory of Radiation") via a re-derivation of Max Planck
Max Karl Ernst Ludwig Planck (; ; 23 April 1858 – 4 October 1947) was a German Theoretical physics, theoretical physicist whose discovery of energy quantum, quanta won him the Nobel Prize in Physics in 1918.
Planck made many substantial con ...
's law of radiation, conceptually based upon probability coefficients ( Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation. In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption. In 1939, Valentin A. Fabrikant predicted using stimulated emission to amplify "short" waves. In 1947, Willis E. Lamb and R.C.Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission. In 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, which was experimentally demonstrated two years later by Brossel, Kastler, and Winter.
Maser
In 1951, Joseph Weber
Joseph Weber (May 17, 1919 – September 30, 2000) was an American physicist. He gave the earliest public lecture on the principles behind the laser and the maser and developed the first gravitational wave detectors, known as Weber bars.
Ear ...
submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference in Ottawa
Ottawa is the capital city of Canada. It is located in the southern Ontario, southern portion of the province of Ontario, at the confluence of the Ottawa River and the Rideau River. Ottawa borders Gatineau, Gatineau, Quebec, and forms the cor ...
, Ontario, Canada. After this presentation, RCA asked Weber to give a seminar on this idea, and Charles H. Townes asked him for a copy of the paper.
In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave
Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequency, frequencies between 300&n ...
radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to ...
s between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicistsamong them Niels Bohr
Niels Henrik David Bohr (, ; ; 7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and old quantum theory, quantum theory, for which he received the No ...
, John von Neumann
John von Neumann ( ; ; December 28, 1903 – February 8, 1957) was a Hungarian and American mathematician, physicist, computer scientist and engineer. Von Neumann had perhaps the widest coverage of any mathematician of his time, in ...
, and Llewellyn Thomasargued the maser violated Heisenberg's uncertainty principle
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position a ...
and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth the effort. In 1964, Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics
The Nobel Prize in Physics () is an annual award given by the Royal Swedish Academy of Sciences for those who have made the most outstanding contributions to mankind in the field of physics. It is one of the five Nobel Prizes established by the ...
, "for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle".
Laser
In April 1957, Japanese engineer Jun-ichi Nishizawa proposed the concept of a " semiconductor optical maser" in a patent application. That same year, Charles H. Townes and Arthur Leonard Schawlow, then at Bell Labs
Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
, began a serious study of infrared "optical masers". As ideas developed, they abandoned infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
radiation to instead concentrate on visible light.
Simultaneously, Columbia University
Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium
Thallium is a chemical element; it has Symbol (chemistry), symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Che ...
. Gould and Townes met and talked about radiation emission as a general subject, but not the specific work they were pursuing. Later, in November 1957, Gould noted his ideas for how a "laser" could be made, including using an open resonator (an essential laser-device component). His notebook included a diagram of an optically pumped laser. It also contained the first recorded use of the term "laser," an acronym for "light amplification by stimulated emission of radiation," along with suggestions for potential applications of the coherent light beams described.
In 1958, Bell Labs filed a patent application for Schawlow and Townes's proposed optical maser; and Schawlow and Townes published a paper with their theoretical calculations in the '' Physical Review''. That same year, Prokhorov independently proposed using an open resonator, the first published appearance of this idea.
At a conference in 1959, Gordon Gould first published the acronym "LASER" in the paper ''The LASER, Light Amplification by Stimulated Emission of Radiation''. Gould's intention was that different "-ASER" acronyms should be used for different parts of the spectrum: "XASER" for x-rays, "UVASER" for ultraviolet, "RASER" for radio-wave, etc. Instead, the term "LASER" ended up being used for all devices operating at wavelengths shorter than microwaves.
Gould's notes included possible applications for a laser, such as optical telecommunications, spectrometry, interferometry
Interferometry is a technique which uses the ''interference (wave propagation), interference'' of Superposition principle, superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important inves ...
, radar
Radar is a system that uses radio waves to determine the distance ('' ranging''), direction ( azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track ...
, and nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
. He continued developing the idea and filed a patent application in April 1959. The United States Patent and Trademark Office
The United States Patent and Trademark Office (USPTO) is an List of federal agencies in the United States, agency in the United States Department of Commerce, U.S. Department of Commerce that serves as the national patent office and trademark ...
(USPTO) denied his application, and awarded a patent to Bell Labs
Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
, in 1960. That provoked a twenty-eight-year legal fight over the rights to various laser technologies and applications. Gould won his first patent in 1977 for optically pumped laser amplifiers, yet it was not until 1987 that he won his first significant patent infringement claim. Many aspects of a working laser were patented by different people: the question of just how to assign credit for inventing the laser remains unresolved by historians.
On May 16, 1960, Theodore H. Maiman operated the first functioning laser at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University
Columbia University in the City of New York, commonly referred to as Columbia University, is a Private university, private Ivy League research university in New York City. Established in 1754 as King's College on the grounds of Trinity Churc ...
, Arthur L. Schawlow, at Bell Labs
Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
, and Gould, at the TRG (Technical Research Group) company. Maiman's functional laser used a flashlamp-pumped synthetic ruby
Ruby is a pinkish-red-to-blood-red-colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sapph ...
crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the Iran
Iran, officially the Islamic Republic of Iran (IRI) and also known as Persia, is a country in West Asia. It borders Iraq to the west, Turkey, Azerbaijan, and Armenia to the northwest, the Caspian Sea to the north, Turkmenistan to the nort ...
ian physicist Ali Javan, and William R. Bennett Jr., and Donald R. Herriott, constructed the first gas laser, using helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
and neon
Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein World Award of Science
The Albert Einstein World Award for Science is an annual award given by the World Cultural Council "as a means of recognition and encouragement for scientific and technological research and development", with special consideration for researche ...
in 1993. In 1962, Robert N. Hall demonstrated the first semiconductor laser, which was made of gallium arsenide
Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure.
Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
and emitted in the near-infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
band of the spectrum at 850 nm. Later that year, Nick Holonyak Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen
Liquid nitrogen (LN2) is nitrogen in a liquid state at cryogenics, low temperature. Liquid nitrogen has a boiling point of about . It is produced industrially by fractional distillation of liquid air. It is a colorless, mobile liquid whose vis ...
temperatures (77 K). In 1970, Zhores Ivanovich Alferov, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Labs also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Recent innovations
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
* new wavelength bands
* maximum average output power
* maximum peak pulse energy
* maximum peak pulse power (physics), power
* minimum output pulse duration
* minimum linewidth
* maximum power efficiency
* minimum cost
Research on improving these aspects of lasers continues to this day.
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.
In 2017, researchers at the Delft University of Technology demonstrated an Josephson effect#The AC Josephson effect, AC Josephson junction microwave laser. Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has the potential for applications in quantum computing. In 2017, researchers at the Technical University of Munich demonstrated the smallest mode locking laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.
In 2017, researchers from the Physikalisch-Technische Bundesanstalt (PTB), together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10millihertz.
Types and operating principles
Gas lasers
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently.
Gas lasers using many different gases have been built and used for many purposes. The helium–neon laser (HeNe) can operate at many different wavelengths, however, the vast majority are engineered to lase at 633 nm; these relatively low-cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial Carbon dioxide laser, carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 μm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 30%. Ion laser, Argon-ion lasers can operate at several lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen TEA laser, transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg) 224 nm and neon
Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of ...
-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers), making them candidates for use in fluorescence
Fluorescence is one of two kinds of photoluminescence, the emission of light by a substance that has absorbed light or other electromagnetic radiation. When exposed to ultraviolet radiation, many substances will glow (fluoresce) with colore ...
suppressed Raman spectroscopy.
Lasing without inversion, Lasing without maintaining the medium excited into a population inversion was demonstrated in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams. This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths so that the likelihood for the ground electrons to absorb any energy has been canceled.
Chemical lasers
Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high-power lasers are especially of interest to the military; however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the hydrogen fluoride laser (2700–2900 nm) and the deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.
The first chemical laser was demonstrated in 1965 by Jerome V. V. Kasper and George C. Pimentel at the University of California, Berkeley. It was a hydrogen chloride laser operating at 3.7 micrometers.
Excimer lasers
Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules that can only exist with one atom in an excited state, excited electronic state. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other, and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all :Noble gas compounds, noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths, with major applications including semiconductor photolithography
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer.
The process begins with a photosensiti ...
and LASIK eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm).
The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet, is sometimes referred to as an excimer laser; however, this appears to be a misnomer since F2 is a stable compound.
Solid-state lasers
Solid-state lasers use a crystalline or glass rod that is "doped" with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby
Ruby is a pinkish-red-to-blood-red-colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sapph ...
(chromium-doped corundum). The population inversion is maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flash tube or another laser. The usage of the term "solid-state" in laser physics is narrower than in typical use. Semiconductor lasers (laser diodes) are typically ''not'' referred to as solid-state lasers.
Neodymium is a common dopant in various solid-state laser crystals, including yttrium orthovanadate (Neodymium-doped yttrium orthovanadate, Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
spectrum at 1064 nm. They are used for cutting, welding, and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers. These lasers are also commonly second-harmonic generation, doubled, third-harmonic generation, tripled or quadrupled in frequency to produce 532 nm (green, visible), 355 nm and 266 nm (ultraviolet, UV) beams, respectively. Frequency-doubled diode-pumped solid-state (DPSS) lasers are used to make bright green laser pointers.
Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020–1050 nm. They are potentially very efficient and high-powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped sapphire
Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
( Ti:sapphire) produces a highly tunable laser, tunable infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (d''n''/d''T'') can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin disk lasers overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.
Fiber lasers
Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions, providing good cooling conditions; fibers have a high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding, and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region while still having a high numerical aperture (NA) to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers, like other optical media, can suffer from the effects of photodarkening when they are exposed to radiation of certain wavelengths. In particular, this can lead to degradation of the material and loss in laser functionality over time. The exact causes and effects of this phenomenon vary from material to material, although it often involves the formation of Color center (crystallography), color centers.
Photonic crystal lasers
Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the Density of states, density of optical states (DOS) structure required for the feedback to take place. They are typical micrometer-sized and tunable on the bands of the photonic crystals.
Semiconductor lasers
Semiconductor lasers are diodes that are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal forms an optical resonator, although the resonator can be external to the semiconductor in some designs.
Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser pointer
A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. Coherence (physics), coherent light) to highlight something of interest with a small brigh ...
s, laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a Electric charge, negatively charged cylinder call ...
s and CD/DVD players. Laser diodes are also frequently used to optically laser pumping, pump other lasers with high efficiency. The highest-power industrial laser diodes, with power of up to 20 kW, are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
In 2012, Nichia and OSRAM developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.
Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized and 1550 nm devices being an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy ''sub-bands'' of an electron in a structure containing several quantum wells.
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials that allow coherent light to be produced from silicon. These are called hybrid silicon lasers. Recent developments have also shown the use of monolithically integrated nanowire lasers directly on silicon for optical interconnects, paving the way for chip-level applications. These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing for on-chip optical signal processing. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Semiconductor quantum dot lasers use quantum dots as the active laser medium. These lasers exhibit device performance that is closer to gas lasers and avoid some of the disadvantages of traditional semiconductor laser media. Improvements in modulation bandwidth, lasing threshold, relative intensity noise, linewidth enhancement factor and temperature insensitivity have all been observed. The quantum dot active region may also be engineered to operate at different wavelengths by varying dot size and composition. This allows quantum dot lasers to be fabricated to operate at wavelengths previously not possible using semiconductor laser technology.
Dye lasers
Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form, these solid-state dye lasers use dye-doped polymers as laser media.
Bubble lasers are dye lasers that use a Bubble (physics), bubble as the optical resonator. Whispering gallery modes in the bubble produce an output spectrum composed of hundreds of evenly spaced peaks: a frequency comb. The spacing of the whispering gallery modes is directly related to the bubble circumference, allowing bubble lasers to be used as highly sensitive pressure sensors.
Free-electron lasers
Free-electron lasers (FEL) generate coherent, high-power radiation that is widely tunable, currently ranging in wavelength from microwaves through terahertz radiation and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term ''free-electron''.
Exotic media
The pursuit of a high-quantum-energy laser using transitions between Nuclear isomer, isomeric states of an atomic nucleus has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles. This research has been international in scope but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a breakthrough is near, an operational gamma-ray laser is yet to be realized.
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect. In conjunction, several advantages were expected from two-stage pumping of a three-level system. It was conjectured that the nucleus of an atom embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser. Furthermore, the nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency.
In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.
Space-based X-ray lasers pumped by nuclear explosions have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
Living cells have been used to produce laser light. The cells were genetically engineered to produce green fluorescent protein, which served as the laser's gain medium. The cells were then placed between two 20-micrometer-wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intensely directed green laser light.
Natural lasers
Like astrophysical masers, irradiated planetary or stellar gases may amplify light producing a natural laser. Mars, Venus, and MWC 349 exhibit this phenomenon.
Uses
When the laser was first invented, it was called "a solution looking for a problem", although Gould noted numerous possible applications in his notebook and patent applications. Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement
Law enforcement is the activity of some members of the government or other social institutions who act in an organized manner to enforce the law by investigating, deterring, rehabilitating, or punishing people who violate the rules and norms gove ...
, entertainment, and the Laser applications#Military, military. Fiber-optic communication relies on multiplexed lasers in dense wave-division multiplexing (WDM) systems to transmit large amounts of data over long distances.
The first widely noticeable use of lasers was the supermarket barcode scanner
A barcode reader or barcode scanner is an optical scanner that can read printed barcodes and send the data they contain to computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses ...
, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser, but the compact disc player was the first laser-equipped device to become common, commercialized in 1982, followed shortly by laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a Electric charge, negatively charged cylinder call ...
s.
Some other uses are:
* Communications: besides fiber-optic communication, lasers are used for free-space optical communication
Free-space optical communication (FSO) is an optical communication technology that uses light propagating in free space to wirelessly transmit data for telecommunications or computer networking over long distances. "Free space" means air, oute ...
, including laser communication in space
* Medicine: see #In medicine, below
* Industry: Laser cutting, cutting including Laser converting, converting thin materials, welding
Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melting, melt the parts together and allow them to cool, causing Fusion welding, fusion. Co ...
, material heat treatment, laser marking, marking parts (Laser engraving, engraving and Laser bonding, bonding), additive manufacturing or 3D printing processes such as selective laser sintering and selective laser melting, laser metal deposition, and non-contact measurement of parts and 3D scanning, and laser cleaning.
* Military: marking targets, guiding munitions, Airborne Laser, missile defense, DIRCM, electro-optical countermeasures (EOCM), lidar
Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
, blinding troops, Laser sight (firearms), firearms sights. See #As weapons, below
* Law enforcement agency, Law enforcement: LIDAR traffic enforcement. Lasers are used for latent fingerprint detection in the forensic identification field
* Research: spectroscopy, laser ablation, laser annealing (metallurgy), annealing, laser scattering, laser interferometry
Interferometry is a technique which uses the ''interference (wave propagation), interference'' of Superposition principle, superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important inves ...
, lidar
Lidar (, also LIDAR, an acronym of "light detection and ranging" or "laser imaging, detection, and ranging") is a method for determining ranging, ranges by targeting an object or a surface with a laser and measuring the time for the reflected li ...
, laser capture microdissection, fluorescence microscopy, metrology, laser cooling
* Commercial products: laser printer
Laser printing is an electrostatic digital printing process. It produces high-quality text and graphics (and moderate-quality photographs) by repeatedly passing a laser beam back and forth over a Electric charge, negatively charged cylinder call ...
s, barcode scanner
A barcode reader or barcode scanner is an optical scanner that can read printed barcodes and send the data they contain to computer. Like a flatbed scanner, it consists of a light source, a lens, and a light sensor for translating optical impulses ...
s, thermometers, laser pointer
A laser pointer or laser pen is a (typically battery-powered) handheld device that uses a laser diode to emit a narrow low-power visible laser beam (i.e. Coherence (physics), coherent light) to highlight something of interest with a small brigh ...
s, holograms, bubblegrams
* Entertainment: optical discs, laser lighting displays, laser turntables.
* Informational markings: Laser lighting display technology can be used to project informational markings onto surfaces such as playing fields, roads, runways, or warehouse floors.
In 2004, excluding diode lasers, approximately 131,000 lasers were sold ,with a value of billion. In the same year, approximately 733 million diode lasers, valued at billion, were sold. Global Industrial laser sales in 2023 reached $21.85 billion.
In medicine
Lasers have many uses in medicine, including laser surgery
Laser surgery is a type of surgery that cuts tissue using a laser in contrast to using a scalpel.
Soft-tissue laser surgery is used in a variety of applications in humans ( general surgery, neurosurgery, ENT, dentistry, orthodontics, and ...
(particularly Laser eye surgery, eye surgery), laser healing (photobiomodulation therapy), kidney stone treatment, Scanning laser ophthalmoscopy, ophthalmoscopy, and cosmetic skin treatments such as acne treatment, cellulite and striae reduction, and Laser hair removal, hair removal.
Lasers are used to treat cancer by shrinking or destroying Neoplasm, tumors or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like cervical cancer, cervical, penile cancer, penile, vaginal cancer, vaginal, vulvar cancer, vulvar, and non-small cell lung cancer. Laser therapy is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser ablation, Laser-induced interstitial thermotherapy (LITT), or interstitial laser Laser coagulation, photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training, and thus it will likely be more expensive than other treatments.
Low-level laser therapy (LLLT) is a treatment in which low-power light from lasers or light-emitting diodes (LEDs) is applied to the surface of the body. This is claimed to stimulate healing, relieve pain, and enhance cell function. The effects appear to be limited to specific wavelengths of light. The effectiveness of this form of treatment is still under investigation. Repeated low-level red light therapy may be effective for controlling myopia in children. Several such devices are cleared by the United States Food and Drug Administration (FDA), and low level red light therapy is being tested for treating a range of medical problems including rheumatoid arthritis and oral mucositis.
As weapons
A laser weapon is a type of directed-energy weapon that uses lasers to inflict damage. Whether they will be deployed as practical, high-performance military weapons remains to be seen. One of the major issues with laser weapons is atmospheric thermal blooming, which is still largely unsolved. This issue is exacerbated when there is fog, smoke, dust, rain, snow, smog, foam, or purposely dispersed obscurant chemicals present. The United States Navy has tested the very short range (1 mile), 30-kilowatt, kW Laser Weapon System or LaWS to be used against targets like small Unmanned aerial vehicle, UAVs, rocket-propelled grenades, and visible motorboat or helicopter engines. It has been described as "six Laser beam welding, welding lasers strapped together." A 60 kW system, HELIOS, is being developed for destroyer-class ships .
Lasers can be used as incapacitating non-lethal weapons. They can cause temporary or permanent vision loss when directed at the eyes. Even lasers with a power output of less than one watt can cause immediate and permanent vision loss under certain conditions, making them potentially non-lethal but incapacitating weapons. The use of such lasers is morally controversial due to the extreme handicap that laser-induced blindness represents. The Protocol on Blinding Laser Weapons bans the use of weapons designed to cause permanent blindness. Weapons designed to cause temporary blindness, known as Dazzler (weapon), dazzlers, are used by military and sometimes law enforcement organizations.
Hobbies
In recent years, some hobbyists have taken an interest in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb , although some have made their own class IV types. However, due to the cost and potential dangers, this is an uncommon hobby. Some hobbyists salvage laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.
Hobbyists have also used surplus lasers taken from retired military applications and modified them for holography. Pulsed ruby and YAG lasers work well for this application.
Examples by power
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the ''peak'' power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed.
Examples of pulsed systems with high peak power:
* 700 terawatt, TW (700×1012 W)National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber
* 10 petawatt, PW (10×1015 W)world's most powerful laser as of 2019, located at the Extreme Light Infrastructure, ELI-NP facility in Măgurele, Romania.
Safety
Even the first laser was recognized as being potentially dangerous. Theodore Maiman
Theodore Harold Maiman (July 11, 1927 – May 5, 2007) was an American engineer and physicist who is widely credited with the invention of the laser.Johnson, John Jr. (May 11, 2008). "Theodore H. Maiman, at age 32; scientist created the first L ...
characterized the first laser as having the power of one "Gillette", as it could burn through one Global Gillette, Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the human eye, eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
* Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players
* Class 2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example, laser pointers.
* Class 3R (formerly IIIa) lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
* Class 3B lasers (5–499 mW) can cause immediate eye damage upon exposure.
* Class 4 lasers (≥ 500 mW) can burn skin, and in some cases, even scattered light from these lasers can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
Infrared lasers with wavelengths longer than about 1.4micrometers are often referred to as "eye-safe", because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label "eye-safe" can be misleading, however, as it applies only to relatively low-power continuous wave beams; a high-power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate-power lasers can injure the eye.
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See Lasers and aviation safety for more on this topic.
Cameras based on charge-coupled devices may be more sensitive to laser damage than biological eyes.
See also
* Coherent perfect absorber
* Homogeneous broadening
* Laser linewidth
* List of laser articles
* List of light sources
* Nanolaser
* Sound amplification by stimulated emission of radiation
* Spaser
* Fabry–Pérot interferometer
* Ultrashort pulse laser
References
Further reading
Books
* Bertolotti, Mario (1999, trans. 2004). ''The History of the Laser''. Institute of Physics. .
* Bromberg, Joan Lisa (1991). ''The Laser in America, 1950–1970''. MIT Press. .
* Csele, Mark (2004). ''Fundamentals of Light Sources and Lasers''. Wiley. .
* Koechner, Walter (1992). ''Solid-State Laser Engineering''. 3rd ed. Springer-Verlag. .
* Siegman, Anthony E. (1986). ''Lasers''. University Science Books. .
* William T. Silfvast, Silfvast, William T. (1996). ''Laser Fundamentals''. Cambridge University Press. .
* Svelto, Orazio (1998). ''Principles of Lasers''. 4th ed. Trans. David Hanna. Springer. .
*
*
* Wilson, J. & Hawkes, J.F.B. (1987). ''Lasers: Principles and Applications''. Prentice Hall International Series in Optoelectronics, Prentice Hall. .
* Yariv, Amnon (1989). ''Quantum Electronics''. 3rd ed. Wiley. .
Periodicals
* ''Applied Physics B: Lasers and Optics'' ()
* ''IEEE Journal of Lightwave Technology'' ()
* ''IEEE Journal of Quantum Electronics'' ()
* ''IEEE Journal of Selected Topics in Quantum Electronics'' ()
* ''IEEE Photonics Technology Letters'' ()
* ''Journal of the Optical Society of America B: Optical Physics'' ()
* ''Laser Focus World'' ()
* ''Optics Letters'' ()
* ''Photonics Spectra'' ()
External links
Encyclopedia of laser physics and technology by Rüdiger Paschotta
* [http://www.technology.niagarac.on.ca/staff/mcsele/lasers/index.html Homebuilt Lasers Page by Professor Mark Csele]
Powerful laser is 'brightest light in the universe'
he world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter
*
an online course by F. Balembois and S. Forget.
* [http://www.laserfest.org/ Website on Lasers 50th anniversary by APS, OSA, SPIE]
Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs
history of the invention, with audio interview clips.
Free software for Simulation of random laser dynamics
Video Demonstrations in Lasers and Optics
Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
MIT Video Lecture: Understanding Lasers and Fiberoptics
Virtual Museum of Laser History, from the touring exhibit by SPIE
website with animations, applications and research about laser and other quantum based phenomena
Universite Paris Sud
{{Authority control
1960 introductions
Lasers,
American inventions
Articles containing video clips
Photonics
Quantum optics
Russian inventions
Soviet inventions