LMNA
   HOME

TheInfoList



OR:

Prelamin-A/C, or lamin A/C is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
that in humans is encoded by the ''LMNA''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
. Lamin A/C belongs to the
lamin Lamins, also known as nuclear lamins, are fibrous proteins in Intermediate filament#Type V – nuclear lamins, type V intermediate filaments, providing structural function and Transcription (biology), transcriptional regulation in the cell nucle ...
family of proteins.


Function

In the setting of ZMPSTE24 deficiency, the final step of lamin processing does not occur, resulting in an accumulation of farnesyl-prelamin A. In Hutchinson–Gilford progeria syndrome, a 50-amino acid deletion in prelamin A (amino acids 607–656) removes the site for the second endoproteolytic cleavage. Consequently, no mature lamin A is formed, and a farnesylated mutant prelamin A (progerin) accumulates in cells. The
nuclear lamina The nuclear lamina is a dense (~30 to 100  nm thick) fibrillar network inside the nucleus of eukaryote cells. It is composed of intermediate filaments and membrane associated proteins. Besides providing mechanical support, the nuclear lam ...
consist of a two-dimensional matrix of proteins located next to the inner nuclear membrane. The
lamin Lamins, also known as nuclear lamins, are fibrous proteins in Intermediate filament#Type V – nuclear lamins, type V intermediate filaments, providing structural function and Transcription (biology), transcriptional regulation in the cell nucle ...
family of proteins make up the matrix and are highly conserved in evolution. During
mitosis Mitosis () is a part of the cell cycle in eukaryote, eukaryotic cells in which replicated chromosomes are separated into two new Cell nucleus, nuclei. Cell division by mitosis is an equational division which gives rise to genetically identic ...
, the lamina matrix is reversibly disassembled as the lamin proteins are
phosphorylated In biochemistry, phosphorylation is described as the "transfer of a phosphate group" from a donor to an acceptor. A common phosphorylating agent (phosphate donor) is ATP and a common family of acceptor are alcohols: : This equation can be writt ...
. Lamin proteins are thought to be involved in nuclear stability,
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important r ...
structure and gene expression. Vertebrate lamins consist of two types, A and B. Through
alternate splicing Alternative splicing, alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to produce different splice variants. For example, some exons of a gene may be included ...
, this gene encodes three type A lamin isoforms. Early in mitosis,
maturation promoting factor Maturation-promoting factor (abbreviated MPF, also called mitosis-promoting factor or M-Phase-promoting factor) is the cyclin–Cdk complex that was discovered first in frog eggs. It stimulates the mitotic and meiotic phases of the cell cycle. ...
(abbreviated MPF, also called mitosis-promoting factor or M-phase-promoting factor) phosphorylates specific serine residues in all three nuclear lamins, causing depolymerization of the lamin intermediate filaments. The phosphorylated lamin B dimers remain associated with the nuclear membrane via their isoprenyl anchor. Lamin A is targeted to the nuclear membrane by an isoprenyl group but it is cleaved shortly after arriving at the membrane. It stays associated with the membrane through protein-protein interactions of itself and other membrane associated proteins, such as TOR1AIP1 (LAP1). Depolymerization of the nuclear lamins leads to disintegration of the nuclear envelope.
Transfection Transfection is the process of deliberately introducing naked or purified nucleic acids into eukaryotic cells. It may also refer to other methods and cell types, although other terms are often preferred: " transformation" is typically used to des ...
experiments demonstrate that phosphorylation of human lamin A is required for lamin depolymerization, and thus for disassembly of the nuclear envelope, which normally occurs early in mitosis.


Clinical significance

Mutations in the ''LMNA'' gene are associated with several diseases, including
Emery–Dreifuss muscular dystrophy Emery–Dreifuss muscular dystrophy (EDMD) is a type of muscular dystrophy, a group of heritable diseases that cause progressive impairment of muscles. EDMD affects muscles used for movement (skeletal muscles), causing atrophy, weakness, and contr ...
, familial partial lipodystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy, Charcot–Marie–Tooth disease, and restrictive dermopathy. A truncated version of lamin A, commonly known as progerin, causes Hutchinson-Gilford-Progeria syndrome. To date over 1,400
SNPs In genetics and bioinformatics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in ...
are know

They can manifest in changes on mRNA, splicing or protein (e.g. Arg471Cys, Arg482Gln, Arg527Leu, Arg527Cys, Ala529Val ) level.


DNA damage

DNA damage (naturally occurring), DNA double-strand damages can be repaired by either
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in Cell (biology), cellular organi ...
(HR) or
non-homologous end joining Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. It is called "non-homologous" because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair ...
(NHEJ). LMNA promotes genetic stability by maintaining the levels of proteins that have key roles in HR and NHEJ. Mouse cells that are deficient for maturation of prelamin A have increased DNA damage and chromosome aberrations, and show increased sensitivity to DNA damaging agents. In progeria, the inadequacy of DNA repair, due to defective LMNA, may cause features of premature aging (see
DNA damage theory of aging The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of DNA damage (naturally occurring), naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although ...
).


Interactions

LMNA has been shown to interact with: * ALOX12 * EMD * NARF * SREBF1 * TMPO * ZNF239 * SIRT1


References


Further reading

* * * * * * * * * * * * * * * * * * * * * * * * * *


External links

* * * * LOVD mutation database
LMNA

GeneCards for LMNALaminopathy Information Site for Lay Public
{{Cytoskeletal Proteins Genes on human chromosome 1 Aging-related genes Aging-related proteins