HOME

TheInfoList



OR:

The
CERN The European Organization for Nuclear Research, known as CERN (; ; ), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Gene ...
Hadron Linacs are linear accelerators that accelerate beams of
hadrons In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced , the name is derived . They are analogous to molecules, which are held together by the electric ...
from a standstill to be used by the larger circular accelerators at the facility. File:Linac1 facility at CERN.jpg, The first CERN Linac, operating from 1958 until 1992 File:Linac 2 facility at CERN.jpg, Linac 2, operating from 1978 to 2018, was used to accelerate protons File:Linac 3 at CERN.jpg, Linac 3, currently (as of 2020) used to accelerate ions File:Linac 4 at CERN.jpg, Linac4, replacing Linac 2 in 2020, accelerates negative hydrogen ions which are then stripped of their electrons


Linac

The Linac, some times referred to as the PS Linac and much later Linac 1, was CERN's first linear accelerator, built to inject 50 MeV protons into the
Proton Synchrotron The Proton Synchrotron (PS, sometimes also referred to as CPS) is a particle accelerator at CERN. It is CERN's first synchrotron, beginning its operation in 1959. For a brief period the PS was the world's highest energy particle accelerator. It ...
(PS). Conceived in the early 1950s, its principle design was based on a similar accelerator at AERE in England.History, Developments and Recent Performance of the CERN Linac 1
etrieved 2018-07-18/ref> The first beams were accelerated in 1958, at currents of 5 mA and a pulse length of 20 μs, which was the world record at that time. The accelerator was fully operational by September 1959, when the design energy of 50 MeV was first reached. From then on, the Linac experienced a phase of rapid development and constant improvement of the output parameters. This culminated in 1978, when a maximal proton current of 70 mA at pulse lengths of 100 μs could be reached. From 1972 on, the Linac didn't deliver the protons directly to the PS anymore, but to the Proton Synchrotron Booster (PSB). The PSB had been built to allow for higher energies of the protons beams already before they enter the PS. After Linac 2 had taken over the task of accelerating protons in 1978, the Linac continued to be used as a reliable testbed for new developments. This included the testing and implementation of a radio-frequency quadrupole as the initial accelerator, which replaced the original Cockcroft-Walton generator in 1984. Furthermore, ways to create and accelerate deuterons, α-particles and H atoms were developed. The latter were used as test beams for LEAR. From late 1986 on, the Linac was also used to accelerate
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
and
sulphur Sulfur (American spelling and the preferred IUPAC name) or sulphur (English in the Commonwealth of Nations, Commonwealth spelling) is a chemical element; it has Symbol (chemistry), symbol S and atomic number 16. It is abundance of the chemical ...
ions.D. J. Warner: ''New and Proposed Linacs at CERN: The LEP (e+/e-) Injector and the SPS Heavy Ion (Pb) Injector''
etrieved 2018-07-24/ref> The Linac ceased to be used in experiments in summer of 1992. It was then decommissioned and removed from its tunnel to make room for Linac 3; the construction of which started October 1992 after the Linac had been removed from the tunnel. Parts of the Linac remain as museum pieces in the Microcosm exhibit.


Linac 2

Linac 2, in the beginning simply referred to as the new Linac was announced in 1973. It was decided to build a new linear accelerator, since the old Linac was unable to keep up with the technical advances of the other machines within CERN's accelerator complex. Linac 2 replaced the Linac as CERN's primary source of proton beams in 1978. It kept the same beam energy of 50 MeV, but allowed for more intense beams with beam currents of up to 150 mA and a longer pulse duration of 200 μs. Originally, it had been discussed to further upgrade the first Linac instead of building a completely new linear accelerator. However, it quickly became clear that the costs of such an update would almost be as expensive as the new Linac. Another fact in favor of this new construction was the possibility to ensure a smooth transition from one Linac to the other without any downtime in between. Also this two linac approach meant that the old Linac could provide a back-up for the new Linac for the first years of operation. Construction of Linac 2 started in December 1973, with an estimated budget of 21.3 million CHF, and was completed in 1978. Linac 2 was 36 meters long and was based at ground level at the main CERN site. It was located in a building parallel to the old Linac tunnel. Throughout its lifetime, Linac 2 went through several updates to keep up with the advances of CERN's accelerator system. The most important upgrade was the replacement of the old 750 kV Cockcroft-Walton generator with a Radio-frequency quadrupole in 1993. This raised the output current to 180 mA. In the late 2000s, it was considered whether to upgrade Linac 2 or build a new linac for injecting particles into HL-LHC. The decision was in the end made to build a new accelerator, the Linac4 to succeed Linac 2 in 2020. Linac 2 was switched off 12 November 2018 at 15:00 by CERN's Director of Accelerators, and was subsequently decommissioned as part of the LHC Injector Upgrade project. In the decommissioning process, Linac 2 was disconnected from the other accelerators of CERN, so it can no longer used to inject particles into CERN accelerators or experiments. However, much of the Linac 2 accelerator hardware is left (as of October 2023) in place, and can now be visited as part of a guided tour.


Linac 3

Linac 3, also referred to as the Lead Linac was constructed inside the former tunnel of Linac 1 and got commissioned in the summer of 1994 (construction started October 1992). It had been specially constructed to accelerate heavy ions, after tests with Linac 1 and an increasing demand from the scientific community suggested to build a new Linac dedicated specifically to this task. The accelerated particles are mainly
lead Lead () is a chemical element; it has Chemical symbol, symbol Pb (from Latin ) and atomic number 82. It is a Heavy metal (elements), heavy metal that is density, denser than most common materials. Lead is Mohs scale, soft and Ductility, malleabl ...
ions, which are provided to the
LHC The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, and ...
and fixed target experiments at the SPS and LEIR. For LEIR's commissioning, also oxygen ions were accelerated. After preparations from 2013 on, Linac 3 was adapted to accelerate
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
ions in 2015. These were used by the NA61/SHINE experiment. Similarly, Linac 3 accelerated
xenon Xenon is a chemical element; it has symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
ions in 2017 for NA61's fixed-target physics programme. On October 12, 2017, these were delivered to the
Large Hadron Collider The Large Hadron Collider (LHC) is the world's largest and highest-energy particle accelerator. It was built by the CERN, European Organization for Nuclear Research (CERN) between 1998 and 2008, in collaboration with over 10,000 scientists, ...
(LHC) for a unique run of data taking: For the first time, xenon ions were accelerated and collided in the LHC. For six hours, LHC's four experiments could take data of the colliding xenon ions. Linac 3 is expected to stay in use at least until 2022.


Linac 4

Linac 4 is a current 86 metre-long linear accelerator that replaced the retired Linac 2. Unlike its predecessors, Linac 4 accelerates negative
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
ion An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s, not protons, and has an acceleration energy of 160 MeV. The ions are then injected to the Proton Synchrotron Booster (PSB) where both electrons are then stripped from each of the hydrogen ions and thus only the nucleus containing one proton remains. By using hydrogen ions instead of protons, the beam loss at the injection is reduced and simplified and this also allows more particles to accumulate in the synchrotron. CERN approved the construction of Linac 4 in June 2007. Project started in 2008. Linac 4 has been built in its own tunnel, parallel to Linac 2, in the main CERN site. The reason for building the accelerator in its own new tunnel is that its building could take place simultaneously with the operation of Linac 2. Linac 4 has increased the energy by a factor of three over its predecessor, Linac 2, and achieve an energy of 160 MeV. This energy increase, when combined with the increased accumulation of particles, has allowed the intensity of the beams for LHC to almost double. This is part of the planned future
luminosity Luminosity is an absolute measure of radiated electromagnetic radiation, electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. In astronomy, luminosity is the total amount of electroma ...
increase of the LHC. The first injection of a particle beam from Linac 4 into the PSB occurred in December 2020.


References


External links


CERN Video: ''Meet Linac4''CERN Video: ''Virtual Visit of the Linac4 in 3D''
{{authority control Particle physics facilities CERN accelerators CERN facilities