The Kutta–Joukowski theorem is a fundamental theorem in
aerodynamics
Aerodynamics () is the study of the motion of atmosphere of Earth, air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an ...
used for the calculation of
lift of an
airfoil
An airfoil (American English) or aerofoil (British English) is a streamlined body that is capable of generating significantly more Lift (force), lift than Drag (physics), drag. Wings, sails and propeller blades are examples of airfoils. Foil (fl ...
(and any two-dimensional body including circular cylinders) translating in a uniform
fluid
In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
at a constant speed so large that the flow seen in the body-fixed frame is steady and
unseparated. The theorem relates the lift generated by an airfoil to the speed of the airfoil through the fluid, the
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
of the fluid and the
circulation around the airfoil. The circulation is defined as the
line integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
around a closed loop enclosing the airfoil of the component of the velocity of the fluid
tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points o ...
to the loop. It is named after
Martin Kutta and
Nikolai Zhukovsky (or Joukowski) who first developed its key ideas in the early 20th century. Kutta–Joukowski theorem is an
inviscid theory, but it is a good approximation for real
viscous flow in typical aerodynamic applications.
Kutta–Joukowski theorem relates lift to circulation much like the
Magnus effect
The Magnus effect is a phenomenon that occurs when a spin (geometry), spinning Object (physics), object is moving through a fluid. A lift (force), lift force acts on the spinning object and its path may be deflected in a manner not present when ...
relates side force (called Magnus force) to rotation.
However, the circulation here is not induced by rotation of the airfoil. The fluid flow in the presence of the airfoil can be considered to be the
superposition of a translational flow and a rotating flow. This rotating flow is induced by the effects of
camber,
angle of attack
In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a Airfoil#Airfoil terminology, reference line on a body (often the chord (aircraft), chord line of an airfoil) and the vector (geometry), vector representing the relat ...
and the sharp
trailing edge
The trailing edge of an aerodynamic surface such as a wing is its rear edge, where the airflow separated by the leading edge meets.Crane, Dale: ''Dictionary of Aeronautical Terms, third edition'', page 521. Aviation Supplies & Academics, 1997. ...
of the airfoil. It should not be confused with a vortex like a
tornado
A tornado is a violently rotating column of air that is in contact with the surface of Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, although the ...
encircling the airfoil. At a large distance from the airfoil, the rotating flow may be regarded as induced by a line vortex (with the rotating line perpendicular to the two-dimensional plane). In the derivation of the Kutta–Joukowski theorem the
airfoil
An airfoil (American English) or aerofoil (British English) is a streamlined body that is capable of generating significantly more Lift (force), lift than Drag (physics), drag. Wings, sails and propeller blades are examples of airfoils. Foil (fl ...
is usually mapped onto a circular cylinder. In many textbooks, the theorem is proved for a circular cylinder and the
Joukowski airfoil, but it holds true for general airfoils.
Lift force formula
file:streamline_of_magnus_effect.svg, 200px, The asymmetric shape of the streamlines shows the presence of circulation which causes the cylinder to experience a lift force whose magnitude is predicted by the Kutta-Joukowski theorem
The theorem applies to two-dimensional
inviscid flow
In fluid dynamics, inviscid flow is the flow of an ''inviscid fluid'' which is a fluid with zero viscosity.
The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the ...
flow around an airfoil section (or any shape of infinite wing span, span). The lift per unit span
of the airfoil is given by
where
and
are the fluid density and the fluid velocity far upstream of the airfoil, and
is the circulation defined as the
line integral
In mathematics, a line integral is an integral where the function (mathematics), function to be integrated is evaluated along a curve. The terms ''path integral'', ''curve integral'', and ''curvilinear integral'' are also used; ''contour integr ...
:
around a closed contour
enclosing the airfoil and followed in the negative (clockwise) direction. As explained below, this path must be in a region of
potential flow
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity pre ...
and not in the
boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
of the cylinder. The integrand
is the component of the local fluid velocity in the direction tangent to the curve
, and
is an infinitesimal length on the curve
. Equation is a form of the ''Kutta–Joukowski theorem''.
Kuethe and Schetzer state the Kutta–Joukowski theorem as follows:
:''The force per unit length acting on a right cylinder of any cross section whatsoever is equal to
and is perpendicular to the direction of
''
Circulation and the Kutta condition
A lift-producing
airfoil
An airfoil (American English) or aerofoil (British English) is a streamlined body that is capable of generating significantly more Lift (force), lift than Drag (physics), drag. Wings, sails and propeller blades are examples of airfoils. Foil (fl ...
either has camber or operates at a positive
angle of attack
In fluid dynamics, angle of attack (AOA, α, or \alpha) is the angle between a Airfoil#Airfoil terminology, reference line on a body (often the chord (aircraft), chord line of an airfoil) and the vector (geometry), vector representing the relat ...
, the angle between the chord line and the fluid flow far upstream of the airfoil. Moreover, the airfoil must have a sharp trailing edge.
Any real fluid is viscous, which implies that the fluid velocity vanishes on the airfoil. Prandtl showed that for large
Reynolds number
In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
, defined as
, and small angle of attack, the flow around a thin airfoil is composed of a narrow viscous region called the
boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
near the body and an
inviscid flow
In fluid dynamics, inviscid flow is the flow of an ''inviscid fluid'' which is a fluid with zero viscosity.
The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the ...
region outside. In applying the Kutta-Joukowski theorem, the loop must be chosen outside this boundary layer. (For example, the circulation calculated using the loop corresponding to the surface of the airfoil would be zero for a viscous fluid.)
The sharp trailing edge requirement corresponds physically to a flow in which the fluid moving along the lower and upper surfaces of the airfoil meet smoothly, with no fluid moving around the trailing edge of the airfoil. This is known as the
Kutta condition.
Kutta and Joukowski showed that for computing the pressure and lift of a thin airfoil for flow at large
Reynolds number
In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
and small angle of attack, the flow can be assumed inviscid in the entire region outside the airfoil provided the Kutta condition is imposed. This is known as the
potential flow
In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity, i.e., for an inviscid fluid and with no vorticity pre ...
theory and works remarkably well in practice.
Derivation
Two derivations are presented below. The first is a
heuristic
A heuristic or heuristic technique (''problem solving'', '' mental shortcut'', ''rule of thumb'') is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless ...
argument, based on physical insight. The second is a formal and technical one, requiring basic
vector analysis
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, \mathbb^3. The term ''vector calculus'' is sometimes used as a ...
and
complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic ...
.
Heuristic argument
For a heuristic argument, consider a thin airfoil of
chord and infinite span, moving through air of density
. Let the airfoil be inclined to the oncoming flow to produce an air speed
on one side of the airfoil, and an air speed
on the other side. The circulation is then
:
The difference in pressure
between the two sides of the airfoil can be found by applying
Bernoulli's equation
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, speed and height. For example, for a fluid flowing horizontally Bernoulli's principle states that an increase in the speed occurs simultaneously with a decrease i ...
:
:
so the downward force on the air, per unit span, is
:
and the upward force (lift) on the airfoil is
A
differential version of this theorem applies on each element of the plate and is the basis of
thin-airfoil theory.
Formal derivation
Lift forces for more complex situations
The lift predicted by the Kutta-Joukowski theorem within the framework of inviscid potential flow theory is quite accurate, even for real viscous flow, provided the flow is steady and unseparated.
In deriving the Kutta–Joukowski theorem, the assumption of irrotational flow was used. When there are free vortices outside of the body, as may be the case for a large number of unsteady flows, the flow is rotational. When the flow is rotational, more complicated theories should be used to derive the lift forces. Below are several important examples.
Impulsively started flow at small angle of attack
: For an impulsively started flow such as obtained by suddenly accelerating an airfoil or setting an angle of attack, there is a
vortex sheet continuously shed at the trailing edge and the lift force is unsteady or time-dependent. For small angle of attack starting flow, the vortex sheet follows a planar path, and the curve of the
lift coefficient
In fluid dynamics, the lift coefficient () is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a co ...
as function of time is given by the Wagner function. In this case the initial lift is one half of the final lift given by the Kutta–Joukowski formula.
The lift attains 90% of its steady state value when the
wing
A wing is a type of fin that produces both Lift (force), lift and drag while moving through air. Wings are defined by two shape characteristics, an airfoil section and a planform (aeronautics), planform. Wing efficiency is expressed as lift-to-d ...
has traveled a distance of about seven chord lengths.
Impulsively started flow at large angle of attack
: When the angle of attack is high enough, the trailing edge vortex sheet is initially in a spiral shape and the lift is singular (infinitely large) at the initial time. The lift drops for a very short time period before the usually assumed monotonically increasing lift curve is reached.
Starting flow at large angle of attack for wings with sharp leading edges
: If, as for a flat plate, the leading edge is also sharp, then vortices also shed at the leading edge and the role of leading edge vortices is two-fold: 1) they are lift increasing when they are still close to the leading edge, so that they elevate the Wagner lift curve, and 2) they are detrimental to lift when they are convected to the trailing edge, inducing a new trailing edge vortex spiral moving in the lift decreasing direction. For this type of flow a vortex force line (VFL) map
can be used to understand the effect of the different vortices in a variety of situations (including more situations than starting flow) and may be used to improve vortex control to enhance or reduce the lift. The vortex force line map is a two dimensional map on which vortex force lines are displayed. For a vortex at any point in the flow, its lift contribution is proportional to its speed, its circulation and the cosine of the angle between the streamline and the vortex force line. Hence the vortex force line map clearly shows whether a given vortex is lift producing or lift detrimental.
Lagally theorem
: When a (mass) source is fixed outside the body, a force correction due to this source can be expressed as the product of the strength of outside source and the induced velocity at this source by all the causes except this source. This is known as the Lagally theorem (named after ). For two-dimensional inviscid flow, the classical Kutta Joukowski theorem predicts a zero drag. When, however, there is vortex outside the body, there is a vortex induced drag, in a form similar to the induced lift.
; Generalized Lagally theorem
: For free vortices and other bodies outside one body without bound vorticity and without vortex production, a generalized Lagally theorem holds, with which the forces are expressed as the products of strength of inner singularities (image vortices, sources and doublets inside each body) and the induced velocity at these singularities by all causes except those inside this body. The contribution due to each inner singularity sums up to give the total force. The motion of outside singularities also contributes to forces, and the force component due to this contribution is proportional to the speed of the singularity.
Individual force of each body for multiple-body rotational flow
: When in addition to multiple free vortices and multiple bodies, there are bound vortices and vortex production on the body surface, the generalized Lagally theorem still holds, but a force due to vortex production exists. This vortex production force is proportional to the vortex production rate and the distance between the vortex pair in production. With this approach, an explicit and algebraic force formula, taking into account of all causes (inner singularities, outside vortices and bodies, motion of all singularities and bodies, and vortex production) holds individually for each body
with the role of other bodies represented by additional singularities. Hence a force decomposition according to bodies is possible.
General three-dimensional viscous flow
: For general three-dimensional, viscous and unsteady flow, force formulas are expressed in integral forms. The volume integration of certain flow quantities, such as vorticity moments, is related to forces. Various forms of integral approach are now available for unbounded domain
and for artificially truncated domain.
The Kutta Joukowski theorem can be recovered from these approaches when applied to a two-dimensional airfoil and when the flow is steady and unseparated.
Lifting line theory for wings, wing-tip vortices and induced drag
: A wing has a finite span, and the circulation at any section of the wing varies with the spanwise direction. This variation is compensated by the release of streamwise vortices, called
trailing vortices, due to conservation of vorticity or Kelvin Theorem of Circulation Conservation. These streamwise vortices merge to two counter-rotating strong spirals separated by distance close to the wingspan and their cores may be visible if relative humidity is high. Treating the trailing vortices as a series of semi-infinite straight line vortices leads to the well-known lifting line theory. By this theory, the wing has a lift force smaller than that predicted by a purely two-dimensional theory using the Kutta–Joukowski theorem. This is due to the upstream effects of the trailing vortices' added downwash on the angle of attack of the wing. This reduces the wing's effective angle of attack, decreasing the amount of lift produced at a given angle of attack and requiring a higher angle of attack to recover this lost lift. At this new higher angle of attack, drag has also increased. Induced drag effectively reduces the slope of the lift curve of a 2-D airfoil and increases the angle of attack of
(while also decreasing the value of
).
See also
*
Horseshoe vortex
References
Bibliography
* Milne-Thomson, L.M. (1973) ''Theoretical Aerodynamics'', Dover Publications Inc, New York
{{DEFAULTSORT:Kutta-Joukowski theorem
Aircraft aerodynamics
Eponymous theorems of physics
Fluid dynamics
Physics theorems
Aircraft wing design