The Kondo model (sometimes referred to as the s-d model) is a model for a single localized quantum impurity coupled to a large reservoir of delocalized and noninteracting
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary partic ...
s. The quantum impurity is represented by a spin-1/2 particle, and is coupled to a continuous band of noninteracting electrons by an antiferromagnetic exchange coupling
. The Kondo model is used as a model for metals containing magnetic impurities, as well as
quantum dot
Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When the q ...
systems.
Kondo Hamiltonian
The Kondo
Hamiltonian
Hamiltonian may refer to:
* Hamiltonian mechanics, a function that represents the total energy of a system
* Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system
** Dyall Hamiltonian, a modified Hamiltonian ...
is given by
:
where
is the spin-1/2 operator representing the impurity, and
:
is the local spin-density of the noninteracting band at the impurity site (
are the Pauli matrices). In the Kondo problem,
, i.e. the exchange coupling is antiferromagnetic.
Solving the Kondo Model
Jun Kondo applied third-order
perturbation theory
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middl ...
to the Kondo model and showed that the
resistivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
of the model diverges logarithmically as the temperature goes to zero. This explained why metal samples containing magnetic impurities have a resistance minimum (see
Kondo effect
In physics, the Kondo effect describes the scattering of conduction electrons in a metal due to magnetic impurities, resulting in a characteristic change i.e. a minimum in electrical resistivity with temperature.
The cause of the effect was fir ...
). The problem of finding a solution to the Kondo model which did not contain this unphysical divergence became known as the Kondo problem.
A number of methods were used to attempt to solve the Kondo problem.
Phillip Anderson devised a perturbative renormalization group method, known as Poor Man's Scaling, which involves perturbatively eliminating excitations to the edges of the noninteracting band. This method indicated that, as temperature is decreased, the effective coupling between the spin and the band,
, increases without limit. As this method is perturbative in J, it becomes invalid when J becomes large, so this method did not truly solve the Kondo problem, although it did hint at the way forward.
The Kondo problem was finally solved when Kenneth Wilson applied the
numerical renormalization group
The numerical renormalization group (NRG) is a technique devised by Kenneth Wilson to solve certain many-body problems where quantum impurity physics plays a key role.
History
The numerical renormalization group is an inherently non-perturbative ...
to the Kondo model and showed that the resistivity goes to a constant as temperature goes to zero.
There are many variants of the Kondo model. For instance, the spin-1/2 can be replaced by a spin-1 or even a greater spin. The two-channel Kondo model is a variant of the Kondo model which has the spin-1/2 coupled to two independent noninteracting bands. All these models have been solved by
Bethe Ansatz. One can also consider the ferromagnetic Kondo model (i.e. the standard Kondo model with J > 0).
The Kondo model is intimately related to the
Anderson impurity model, as can be shown by
Schrieffer–Wolff transformation
In quantum mechanics, the Schrieffer–Wolff transformation is a unitary transformation used to perturbatively diagonalize the system Hamiltonian to first order in the interaction. As such, the Schrieffer–Wolff transformation is an operator v ...
.
See also
*
Anderson impurity model
*
Kondo effect
In physics, the Kondo effect describes the scattering of conduction electrons in a metal due to magnetic impurities, resulting in a characteristic change i.e. a minimum in electrical resistivity with temperature.
The cause of the effect was fir ...
References
{{Reflist
Condensed matter physics
Quantum magnetism