Komar Superpotential
   HOME

TheInfoList



OR:

In
general relativity General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the differential geometry, geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of grav ...
, the Komar superpotential, corresponding to the invariance of the Hilbert–Einstein Lagrangian \mathcal_\mathrm = R \sqrt \, \mathrm^4x, is the
tensor density In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is ...
: : U^(,\xi) =\nabla^\xi^ = (g^ \nabla_\xi^ - g^ \nabla_\xi^) \, , associated with a
vector field In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
\xi=\xi^\partial_, and where \nabla_ denotes covariant derivative with respect to the
Levi-Civita connection In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
. The Komar two-form: : \mathcal(,\xi) =U^(,\xi) \mathrmx_= \nabla^\xi^\sqrt\,\mathrmx_ \, , where \mathrmx_= \iota_\mathrmx_= \iota_\iota_\mathrm^4x denotes
interior product In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, contraction, or inner derivation) is a degree −1 (anti)derivation on the exterio ...
, generalizes to an arbitrary vector field \xi the so-called above Komar superpotential, which was originally derived for timelike
Killing vector field In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a pseudo-Riemannian manifold that preserves the metric tensor. Killing vector fields are the infinitesimal generators of isom ...
s. Komar superpotential is affected by the anomalous factor problem: In fact, when computed, for example, on the Kerr–Newman solution, produces the correct angular momentum, but just one-half of the expected mass.


See also

*
Superpotential In theoretical physics, the superpotential is a function in supersymmetric quantum mechanics. Given a superpotential, two "partner potentials" are derived that can each serve as a potential in the Schrödinger equation. The partner potentials hav ...
*
Einstein–Hilbert action The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the metric signature, the gravitational part of the action is given as :S = \int R \sqrt ...
* Komar mass *
Tensor calculus In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects associated with a vector space. Tensors may map between different objects such as vectors, scalars, and even other ...
*
Christoffel symbols In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surface (topology), surfaces or other manifolds endowed with a metri ...
*
Riemann curvature tensor Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...


Notes


References

* Equations of physics Tensors General relativity {{relativity-stub Potentials