Knot Polynomial
   HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, a knot polynomial is a
knot invariant In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some i ...
in the form of a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
whose coefficients encode some of the properties of a given
knot A knot is an intentional complication in Rope, cordage which may be practical or decorative, or both. Practical knots are classified by function, including List of hitch knots, hitches, List of bend knots, bends, List of loop knots, loop knots, ...
.


History

The first knot polynomial, the
Alexander polynomial In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a ...
, was introduced by
James Waddell Alexander II James Waddell Alexander II (September 19, 1888 September 23, 1971) was a mathematician and topologist of the pre-World War II era and part of an influential Princeton topology elite, which included Oswald Veblen, Solomon Lefschetz, and others. ...
in 1923. Other knot polynomials were not found until almost 60 years later. In the 1960s, John Conway came up with a
skein relation Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invaria ...
for a version of the Alexander polynomial, usually referred to as the
Alexander–Conway polynomial In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a ...
. The significance of this skein relation was not realized until the early 1980s, when
Vaughan Jones Sir Vaughan Frederick Randal Jones (31 December 19526 September 2020) was a New Zealand mathematician known for his work on von Neumann algebras and knot polynomials. He was awarded a Fields Medal in 1990. Early life Jones was born in Gisbo ...
discovered the
Jones polynomial In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polyno ...
. This led to the discovery of more knot polynomials, such as the so-called
HOMFLY polynomial In the mathematics, mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables ...
. Soon after Jones' discovery,
Louis Kauffman Louis Hirsch Kauffman (born February 3, 1945) is an American mathematician, mathematical physicist, and professor of mathematics in the Department of Mathematics, Statistics, and Computer Science at the University of Illinois at Chicago. He doe ...
noticed the Jones polynomial could be computed by means of a partition function (state-sum model), which involved the bracket polynomial, an invariant of framed knots. This opened up avenues of research linking knot theory and
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applicati ...
. In the late 1980s, two related breakthroughs were made.
Edward Witten Edward Witten (born August 26, 1951) is an American theoretical physics, theoretical physicist known for his contributions to string theory, topological quantum field theory, and various areas of mathematics. He is a professor emeritus in the sc ...
demonstrated that the Jones polynomial, and similar Jones-type invariants, had an interpretation in
Chern–Simons theory The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who intr ...
. Viktor Vasilyev and
Mikhail Goussarov Mikhail Goussarov (March 8, 1958, Leningrad – June 25, 1999, Tel Aviv) was a Soviet mathematician who worked in low-dimensional topology. He and Victor Vassiliev independently discovered finite type invariants of knots and links. He drowned at ...
started the theory of
finite type invariant In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant (so named after Victor Anatolyevich Vassiliev), is a knot invariant that can be extended (in a precise manner to be described) to an invariant of certain singul ...
s of knots. The coefficients of the previously named polynomials are known to be of finite type (after perhaps a suitable "change of variables"). In recent years, the Alexander polynomial has been shown to be related to
Floer homology In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is an invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer intro ...
. The graded
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
of the knot Floer homology of
Peter Ozsváth Peter Steven Ozsváth (born October 20, 1967) is a professor of mathematics at Princeton University. He created, along with Zoltán Szabó, Heegaard Floer homology, a homology theory for 3-manifolds. Education Ozsváth received his PhD from Pri ...
and Zoltan Szabó is the Alexander polynomial.


Examples

Alexander–Briggs notation In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest kn ...
organizes knots by their crossing number.
Alexander polynomial In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a ...
s and Conway polynomials can ''not'' recognize the difference of left-trefoil knot and right-trefoil knot. Image:Trefoil knot left.svg, The left-trefoil knot. Image:TrefoilKnot_01.svg, The right-trefoil knot. So we have the same situation as the granny knot and square knot since the
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
of knots in \mathbb^3 is the product of knots in
knot polynomials In the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot. History The first knot polynomial, the Alexander polynomial, was introdu ...
.


See also


Specific knot polynomials

*
Alexander polynomial In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a ...
* Bracket polynomial *
HOMFLY polynomial In the mathematics, mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables ...
*
Jones polynomial In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polyno ...
* Kauffman polynomial


Related topics

* Graph polynomial, a similar class of polynomial invariants in graph theory *
Tutte polynomial The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph G and contai ...
, a special type of graph polynomial related to the Jones polynomial *
Skein relation Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invaria ...
for a formal definition of the Alexander polynomial, with a worked-out example.


Further reading

* * {{Knot theory, state=collapsed Knot invariants Polynomials