HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
, a knot invariant is a quantity (in a broad sense) defined for each
knot A knot is an intentional complication in Rope, cordage which may be practical or decorative, or both. Practical knots are classified by function, including List of hitch knots, hitches, List of bend knots, bends, List of loop knots, loop knots, ...
which is the same for
equivalent Equivalence or Equivalent may refer to: Arts and entertainment *Album-equivalent unit, a measurement unit in the music industry *Equivalence class (music) *'' Equivalent VIII'', or ''The Bricks'', a minimalist sculpture by Carl Andre *'' Equiva ...
knots. The equivalence is often given by ambient isotopy but can be given by
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a
homology theory In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
(for example, "a ''knot invariant'' is a rule that assigns to any knot a quantity such that if and are equivalent then ."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification,Purcell, Jessica (2020). ''Hyperbolic Knot Theory'', p.7. American Mathematical Society. "A ''knot invariant'' is a function from the set of knots to some other set whose value depends only on the equivalence class of the knot."Messer, Robert and Straffin, Philip D. (2018). ''Topology Now!'', p.50. American Mathematical Society. "A ''knot invariant'' is a mathematical property or quantity associated with a knot that does not change as we perform triangular moves on the knot. both in "enumeration" and "duplication removal".Ricca, Renzo L.; ed. (2012). ''An Introduction to the Geometry and Topology of Fluid Flows'', p.67. Springer Netherlands. . From the modern perspective, it is natural to define a knot invariant from a
knot diagram In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest k ...
. Of course, it must be unchanged (that is to say, invariant) under the Reidemeister moves ("triangular moves"). Tricolorability (and ''n''-colorability) is a particularly simple and common example. Other examples are knot polynomials, such as the
Jones polynomial In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polyno ...
, which are currently among the most useful invariants for distinguishing knots from one another, though currently it is not known whether there exists a knot polynomial which distinguishes all knots from each other. However, there are invariants which distinguish the
unknot In the knot theory, mathematical theory of knots, the unknot, not knot, or trivial knot, is the least knotted of all knots. Intuitively, the unknot is a closed loop of rope without a Knot (mathematics), knot tied into it, unknotted. To a knot ...
from all other knots, such as
Khovanov homology In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov. Overv ...
and knot Floer homology. Other invariants can be defined by considering some integer-valued function of knot diagrams and taking its minimum value over all possible diagrams of a given knot. This category includes the crossing number, which is the minimum number of crossings for any diagram of the knot, and the bridge number, which is the minimum number of bridges for any diagram of the knot. Historically, many of the early knot invariants are not defined by first selecting a diagram but defined intrinsically, which can make computing some of these invariants a challenge. For example, knot genus is particularly tricky to compute, but can be effective (for instance, in distinguishing mutants). The complement of a knot itself (as a
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
) is known to be a "complete invariant" of the knot by the Gordon–Luecke theorem in the sense that it distinguishes the given knot from all other knots up to ambient isotopy and
mirror image A mirror image (in a plane mirror) is a reflection (physics), reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical phenomenon, optical effect, it r ...
. Some invariants associated with the knot complement include the knot group which is just the
fundamental group In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It record ...
of the complement. The knot quandle is also a complete invariant in this sense but it is difficult to determine if two quandles are isomorphic. The peripheral subgroup can also work as a complete invariant. By Mostow–Prasad rigidity, the hyperbolic structure on the complement of a hyperbolic link is unique, which means the hyperbolic volume is an invariant for these knots and links. Volume, and other hyperbolic invariants, have proven very effective, utilized in some of the extensive efforts at knot tabulation. In recent years, there has been much interest in homological invariants of knots which categorify well-known invariants. Heegaard Floer homology is a
homology theory In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the ''homology of a chain complex'', resulting in a sequence of abelian grou ...
whose
Euler characteristic In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's ...
is the Alexander polynomial of the knot. It has been proven effective in deducing new results about the classical invariants. Along a different line of study, there is a combinatorially defined cohomology theory of knots called
Khovanov homology In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial. It was developed in the late 1990s by Mikhail Khovanov. Overv ...
whose Euler characteristic is the
Jones polynomial In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polyno ...
. This has recently been shown to be useful in obtaining bounds on slice genus whose earlier proofs required
gauge theory In physics, a gauge theory is a type of field theory in which the Lagrangian, and hence the dynamics of the system itself, does not change under local transformations according to certain smooth families of operations (Lie groups). Formally, t ...
. Mikhail Khovanov and Lev Rozansky have since defined several other related cohomology theories whose Euler characteristics recover other classical invariants. Catharina Stroppel gave a representation theoretic interpretation of Khovanov homology by categorifying quantum group invariants. There is also growing interest from both knot theorists and scientists in understanding "physical" or geometric properties of knots and relating it to topological invariants and knot type. An old result in this direction is the Fáry–Milnor theorem states that if the total curvature of a knot in \R^3 satisfies :\oint_K \kappa \,ds \leq 4\pi, where is the
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
at , then is an unknot. Therefore, for knotted curves, :\oint_K \kappa\,ds > 4\pi.\, An example of a "physical" invariant is ropelength, which is the length of unit-diameter rope needed to realize a particular knot type.


Other invariants

* * (or Vassiliev or Vassiliev–Goussarov invariant) * *


Sources


Further reading

* * *


External links

* * {{Knot theory, state=collapsed