The Jarzynski equality (JE) is an
equation in
statistical mechanics that relates
free energy differences between two states and the irreversible work along an ensemble of trajectories joining the same states. It is named after the physicist
Christopher Jarzynski
Christopher Jarzynski is an American physicist and Distinguished University Professor at University of Maryland's Department of Chemistry and Biochemistry, Department of Physics, and Institute for Physical Science and Technology, and fellow of the ...
(then at the
University of Washington
The University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington.
Founded in 1861, Washington is one of the oldest universities on the West Coast; it was established in Seat ...
and
Los Alamos National Laboratory
Los Alamos National Laboratory (often shortened as Los Alamos and LANL) is one of the sixteen research and development laboratories of the United States Department of Energy (DOE), located a short distance northwest of Santa Fe, New Mexico, i ...
, currently at the
University of Maryland
The University of Maryland, College Park (University of Maryland, UMD, or simply Maryland) is a public university, public Land-grant university, land-grant research university in College Park, Maryland. Founded in 1856, UMD is the Flagship un ...
) who derived it in 1996.
Fundamentally, the Jarzynski equality points to the fact that the fluctuations in the work satisfy certain constraints separately from the average value of the work that occurs in some process.
Overview
In
thermodynamics
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws o ...
, the free energy difference
between two states ''A'' and ''B'' is connected to the work ''W'' done on the system through the ''inequality'':
:
,
with equality holding only in the case of a
quasistatic process, i.e. when one takes the system from ''A'' to ''B'' infinitely slowly (such that all intermediate states are in
thermodynamic equilibrium
Thermodynamic equilibrium is an axiomatic concept of thermodynamics. It is an internal state of a single thermodynamic system, or a relation between several thermodynamic systems connected by more or less permeable or impermeable walls. In ther ...
). In contrast to the thermodynamic statement above, the JE remains valid no matter how fast the process happens. The JE states:
:
Here ''k'' is the
Boltzmann constant
The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas consta ...
and ''T'' is the temperature of the system in the equilibrium state ''A'' or, equivalently, the temperature of the
heat reservoir
A thermal reservoir, also thermal energy reservoir or thermal bath, is a thermodynamic system with a heat capacity so large that the temperature of the reservoir changes relatively little when a much more significant amount of heat is added o ...
with which the system was thermalized before the process took place.
The over-line indicates an average over all possible realizations of an external process that takes the system from the equilibrium state ''A'' to a new, generally nonequilibrium state under the same external conditions as that of the equilibrium state ''B''. This average over possible realizations is an average over different possible fluctuations that could occur during the process (due to Brownian motion, for example), each of which will cause a slightly different value for the work done on the system. In the limit of an infinitely slow process, the work ''W'' performed on the system in each realization is numerically the same, so the average becomes irrelevant and the Jarzynski equality reduces to the thermodynamic equality
(see above). Away from the infinitely slow limit, the average value of the work obeys
while the distribution of the fluctuations in the work are further constrained such that
In this general case, ''W'' depends upon the specific initial
microstate of the system, though its average can still be related to
through an application of
Jensen's inequality in the JE, viz.
:
in accordance with the second law of thermodynamics.
The Jarzynski equality holds when the initial state is a Boltzmann distribution (e.g. the system is in equilibrium) and the system and environment can be described by a large number of degrees of freedom evolving under arbitrary Hamiltonian dynamics. The final state does not need to be in equilibrium. (For example, in the textbook case of a gas compressed by a piston, the gas is equilibrated at piston position ''A'' and compressed to piston position ''B''; in the Jarzynski equality, the final state of the gas does not need to be equilibrated at this new piston position).
Since its original derivation, the Jarzynski equality has been verified in a variety of contexts, ranging from experiments with biomolecules to numerical simulations.
The
Crooks fluctuation theorem
The Crooks fluctuation theorem (CFT), sometimes known as the Crooks equation, is an equation in statistical mechanics that relates the work done on a system during a non-equilibrium transformation to the free energy difference between the final and ...
, proved two years later, leads immediately to the Jarzynski equality. Many other theoretical derivations have also appeared, lending further confidence to its generality.
History
A question has been raised about who gave the earliest statement of the Jarzynski equality. For example, in 1977 the Russian physicists G.N. Bochkov and Yu. E. Kuzovlev (see Bibliography) proposed a generalized version of the
fluctuation-dissipation theorem which holds in the presence of arbitrary external time-dependent forces. Despite its close similarity to the JE, the Bochkov-Kuzovlev result does not relate free energy differences to work measurements, as discussed by Jarzynski himself in 2007.
Another similar statement to the Jarzynski equality is the
nonequilibrium partition identity, which can be traced back to Yamada and Kawasaki. (The Nonequilibrium Partition Identity is the Jarzynski equality applied to two systems whose free energy difference is zero - like straining a fluid.) However, these early statements are very limited in their application. Both Bochkov and Kuzovlev as well as Yamada and Kawasaki consider a deterministic time reversible
Hamiltonian system. As Kawasaki himself noted this precludes any treatment of nonequilibrium steady states. The fact that these nonequilibrium systems heat up forever because of the lack of any thermostatting mechanism leads to divergent integrals etc. No purely Hamiltonian description is capable of treating the experiments carried out to verify the
Crooks fluctuation theorem
The Crooks fluctuation theorem (CFT), sometimes known as the Crooks equation, is an equation in statistical mechanics that relates the work done on a system during a non-equilibrium transformation to the free energy difference between the final and ...
, Jarzynski equality and the
fluctuation theorem. These experiments involve thermostatted systems in contact with heat baths.
See also
*
Fluctuation theorem - Provides an equality that quantifies fluctuations in time averaged entropy production in a wide variety of nonequilibrium systems.
*
Crooks fluctuation theorem
The Crooks fluctuation theorem (CFT), sometimes known as the Crooks equation, is an equation in statistical mechanics that relates the work done on a system during a non-equilibrium transformation to the free energy difference between the final and ...
- Provides a fluctuation theorem between two equilibrium states. Implies Jarzynski equality.
*
Nonequilibrium partition identity
References
Bibliography
*
For earlier results dealing with the statistics of work in adiabatic (i.e. Hamiltonian) nonequilibrium processes, see:
* ; ''op. cit.'' 76, 1071 (1979)
* ; ''op. cit.'' 106A, 480 (1981)
*
*
For a comparison of such results, see:
*
For an extension to relativistic Brownian motion, see:
* {{citation, first1=P. S., last1=Pal, first2=Sebastian, last2=Deffner, title=Stochastic thermodynamics of relativistic Brownian motion, journal=New Journal of Physics, volume=22, page=073054, year=2020, issue=7, doi=10.1088/1367-2630/ab9ce6, arxiv=2003.02136, bibcode=2020NJPh...22g3054P, doi-access=free
External links
Jarzynski Equality on arxiv.org"Fluctuation-Dissipation: Response Theory in Statistical Physics" by Umberto Marini Bettolo Marconi, Andrea Puglisi, Lamberto Rondoni, Angelo Vulpiani
Statistical mechanics
Non-equilibrium thermodynamics
Equations