Jacobian Varieties
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Jacobian variety ''J''(''C'') of a non-singular
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
''C'' of
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
''g'' is the
moduli space In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme (mathematics), scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of suc ...
of degree 0
line bundle In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organis ...
s. It is the connected component of the identity in the
Picard group In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global ver ...
of ''C'', hence an
abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group ...
.


Introduction

The Jacobian variety is named after
Carl Gustav Jacobi Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants and number theory. Biography Jacobi was ...
, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of
Niels Abel Niels Henrik Abel ( , ; 5 August 1802 – 6 April 1829) was a Norwegian mathematician who made pioneering contributions in a variety of fields. His most famous single result is the first complete proof demonstrating the impossibility of solvin ...
into an isomorphism. It is a principally polarized
abelian variety In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth Algebraic variety#Projective variety, projective algebraic variety that is also an algebraic group, i.e., has a group ...
, of
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
''g'', and hence, over the complex numbers, it is a
complex torus In mathematics, a complex torus is a particular kind of complex manifold ''M'' whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number ''N'' circles). Here ''N'' must be the even number 2''n'', whe ...
. If ''p'' is a point of ''C'', then the curve ''C'' can be mapped to a
subvariety Subvariety may refer to: * Subvariety (botany) * Subvariety (algebraic geometry) * Variety (universal algebra) In universal algebra, a variety of algebras or equational class is the class of all algebraic structures of a given signature satis ...
of ''J'' with the given point ''p'' mapping to the identity of ''J'', and ''C'' generates ''J'' as a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
.


Construction for complex curves

Over the complex numbers, the Jacobian variety can be realized as the
quotient space Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular: *Quotient space (topology), in case of topological spaces *Quotient space (linear algebra), in case of vector spaces *Quotient sp ...
''V''/''L'', where ''V'' is the dual of the
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
of all global
holomorphic differential In mathematics, ''differential of the first kind'' is a traditional term used in the theories of Riemann surfaces (more generally, complex manifolds) and algebraic curves (more generally, algebraic varieties), for everywhere-regular differential ...
s on ''C'' and ''L'' is the
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an or ...
of all elements of ''V'' of the form :
gamma Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
\ \omega \mapsto \int_\gamma \omega where ''γ'' is a closed
path A path is a route for physical travel – see Trail. Path or PATH may also refer to: Physical paths of different types * Bicycle path * Bridle path, used by people on horseback * Course (navigation), the intended path of a vehicle * Desir ...
in ''C''. In other words, : J(C) = H^0(\Omega_C^1)^* / H_1(C), with H_1(C) embedded in H^0(\Omega_C^1)^* via the above map. This can be done explicitly with the use of
theta function In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube ...
s. The Jacobian of a curve over an arbitrary field was constructed by as part of his proof of the
Riemann hypothesis for curves over a finite field Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first ...
. The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its
Picard variety In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global ver ...
of degree 0 divisors modulo linear equivalence.


Algebraic structure

As a group, the Jacobian variety of a curve is isomorphic to the quotient of the group of
divisors In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
of degree zero by the subgroup of principal divisors, i.e., divisors of rational functions. This holds for fields that are not
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra h ...
, provided one considers divisors and functions defined over that field.


Further notions

Torelli's theorem In mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) ''C'' is determined by ...
states that a complex curve is determined by its Jacobian (with its polarization). The
Schottky problem In mathematics, the Schottky problem, named after Friedrich Schottky, is a classical question of algebraic geometry, asking for a characterisation of Jacobian varieties amongst abelian varieties. Geometric formulation More precisely, one should c ...
asks which principally polarized abelian varieties are the Jacobians of curves. The
Picard variety In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global ver ...
, the
Albanese variety In mathematics, the Albanese variety A(V), named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. Precise statement The Albanese variety of a smooth projective algebraic variety V is an abelian variety \operatorname(V) ...
,
generalized Jacobian In algebraic geometry a generalized Jacobian is a commutative algebraic group associated to a curve with a divisor, generalizing the Jacobian variety of a complete curve. They were introduced by Maxwell Rosenlicht in 1954, and can be used to stud ...
, and
intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by p ...
s are generalizations of the Jacobian for higher-dimensional varieties. For varieties of higher dimension the construction of the Jacobian variety as a quotient of the space of holomorphic 1-forms generalizes to give the
Albanese variety In mathematics, the Albanese variety A(V), named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. Precise statement The Albanese variety of a smooth projective algebraic variety V is an abelian variety \operatorname(V) ...
, but in general this need not be isomorphic to the Picard variety.


See also

*
Period matrix In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures. Ehresmann's theorem Let be a holomorphic submersive morphism. For a point ''b'' of ''B'', we denote ...
– period matrices are a useful technique for computing the Jacobian of a curve *
Hodge structure In mathematics, a Hodge structure, named after W. V. D. Hodge, is an algebraic structure at the level of linear algebra, similar to the one that Hodge theory gives to the cohomology groups of a smooth and compact Kähler manifold. Hodge structures ...
– these are generalizations of Jacobians * Honda–Tate theorem – classifies abelian varieties over finite fields up to isogeny *
Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by p ...


References


Computation techniques

* * – techniques for constructing Jacobians


Isogeny classes

* *
Abelian varieties isogenous to no Jacobian


Cryptography

* Curves, Jacobians, and Cryptography


General

* * * * * * * * {{Algebraic curves navbox Abelian varieties Algebraic curves Geometry of divisors Moduli theory